印度口音英语ASR:一些早期结果

Kaustubh Kulkarni, Sailik Sengupta, V. Ramasubramanian, Josef G. Bauer, G. Stemmer
{"title":"印度口音英语ASR:一些早期结果","authors":"Kaustubh Kulkarni, Sailik Sengupta, V. Ramasubramanian, Josef G. Bauer, G. Stemmer","doi":"10.1109/SLT.2008.4777881","DOIUrl":null,"url":null,"abstract":"The problem of the effect of accent on the performance of Automatic Speech Recognition (ASR) systems is well known. In this paper, we study the effect of accent variability on the performance of the Indian English ASR task. We evaluate the test vocabularies on HMMs trained on (a) Accent specific training data (b) Accent pooled training data which combines all the accent specific training data (c) Accent pooled training data of reduced size matching the size of the accent specific training data. We demonstrate that the accent pooled training set performs the best on phonetically rich isolated word recognition task. But the accent specific HMMs perform better than the reduced accent pooled HMMs, indicating a possible approach of using a first stage accent identification to choose the correct accent trained HMMs for further recognition.","PeriodicalId":186876,"journal":{"name":"2008 IEEE Spoken Language Technology Workshop","volume":"23 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2008-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Accented Indian english ASR: Some early results\",\"authors\":\"Kaustubh Kulkarni, Sailik Sengupta, V. Ramasubramanian, Josef G. Bauer, G. Stemmer\",\"doi\":\"10.1109/SLT.2008.4777881\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The problem of the effect of accent on the performance of Automatic Speech Recognition (ASR) systems is well known. In this paper, we study the effect of accent variability on the performance of the Indian English ASR task. We evaluate the test vocabularies on HMMs trained on (a) Accent specific training data (b) Accent pooled training data which combines all the accent specific training data (c) Accent pooled training data of reduced size matching the size of the accent specific training data. We demonstrate that the accent pooled training set performs the best on phonetically rich isolated word recognition task. But the accent specific HMMs perform better than the reduced accent pooled HMMs, indicating a possible approach of using a first stage accent identification to choose the correct accent trained HMMs for further recognition.\",\"PeriodicalId\":186876,\"journal\":{\"name\":\"2008 IEEE Spoken Language Technology Workshop\",\"volume\":\"23 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2008-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2008 IEEE Spoken Language Technology Workshop\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SLT.2008.4777881\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2008 IEEE Spoken Language Technology Workshop","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SLT.2008.4777881","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

摘要

重音对自动语音识别(ASR)系统性能影响的问题是众所周知的。在本文中,我们研究口音变异对印度英语ASR任务表现的影响。我们在(a)特定口音训练数据(b)结合所有特定口音训练数据的口音池训练数据(c)与特定口音训练数据大小匹配的缩小大小的口音池训练数据上训练hmm上评估测试词汇。结果表明,重音池训练集在语音丰富的孤立词识别任务中表现最好。但是,针对特定口音的hmm比简化后的混合口音hmm表现得更好,这表明了一种可能的方法,即使用第一阶段的口音识别来选择正确的经过训练的口音hmm进行进一步识别。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Accented Indian english ASR: Some early results
The problem of the effect of accent on the performance of Automatic Speech Recognition (ASR) systems is well known. In this paper, we study the effect of accent variability on the performance of the Indian English ASR task. We evaluate the test vocabularies on HMMs trained on (a) Accent specific training data (b) Accent pooled training data which combines all the accent specific training data (c) Accent pooled training data of reduced size matching the size of the accent specific training data. We demonstrate that the accent pooled training set performs the best on phonetically rich isolated word recognition task. But the accent specific HMMs perform better than the reduced accent pooled HMMs, indicating a possible approach of using a first stage accent identification to choose the correct accent trained HMMs for further recognition.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信