基于FPGA的片上网络资源估计数学模型

V. Fresse, C. Combes, Hatem Belhasseb
{"title":"基于FPGA的片上网络资源估计数学模型","authors":"V. Fresse, C. Combes, Hatem Belhasseb","doi":"10.1109/CSE.2014.117","DOIUrl":null,"url":null,"abstract":"One main challenge of prototyping a SoC (System on Chip) on FPGA (Field Programmable Gate Array) is to tune at best the communication architecture according to the task graph of an application and the available resources of the chosen FPGA. The exploration of the potential design candidates is time consuming, tedious and does not scale. The sheer number of parameters leads to a wide design space that cannot be explored in a limited time. The aim of this paper is to identify mathematical models applied to NoC to estimate FPGA resources. Mathematical models are obtained from a database containing a set of observed results. Using the database, the Pearson's correlation coefficient and the variable clustering are used to set the most appropriate variables and constants. The mathematical models are obtained and then validated with a set of experimental results. The validation shows that the error rate between observed results and the analytically estimated results is less than 5%. The designer can therefore tune the NoC in shorter exploration time.","PeriodicalId":258990,"journal":{"name":"2014 IEEE 17th International Conference on Computational Science and Engineering","volume":"82 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-12-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Mathematical Models Applied to On-Chip Network on FPGA for Resource Estimation\",\"authors\":\"V. Fresse, C. Combes, Hatem Belhasseb\",\"doi\":\"10.1109/CSE.2014.117\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"One main challenge of prototyping a SoC (System on Chip) on FPGA (Field Programmable Gate Array) is to tune at best the communication architecture according to the task graph of an application and the available resources of the chosen FPGA. The exploration of the potential design candidates is time consuming, tedious and does not scale. The sheer number of parameters leads to a wide design space that cannot be explored in a limited time. The aim of this paper is to identify mathematical models applied to NoC to estimate FPGA resources. Mathematical models are obtained from a database containing a set of observed results. Using the database, the Pearson's correlation coefficient and the variable clustering are used to set the most appropriate variables and constants. The mathematical models are obtained and then validated with a set of experimental results. The validation shows that the error rate between observed results and the analytically estimated results is less than 5%. The designer can therefore tune the NoC in shorter exploration time.\",\"PeriodicalId\":258990,\"journal\":{\"name\":\"2014 IEEE 17th International Conference on Computational Science and Engineering\",\"volume\":\"82 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-12-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2014 IEEE 17th International Conference on Computational Science and Engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CSE.2014.117\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 IEEE 17th International Conference on Computational Science and Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CSE.2014.117","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

在FPGA(现场可编程门阵列)上原型化SoC(片上系统)的一个主要挑战是根据应用程序的任务图和所选FPGA的可用资源至多调整通信架构。探索潜在的候选设计既耗时又乏味,而且不可扩展。参数的绝对数量导致了在有限的时间内无法探索的广泛设计空间。本文的目的是确定应用于NoC的数学模型来估计FPGA资源。数学模型是从包含一组观测结果的数据库中获得的。利用该数据库,利用Pearson相关系数和变量聚类来设置最合适的变量和常数。建立了数学模型,并用一组实验结果进行了验证。验证表明,观测结果与分析估计结果的错误率小于5%。因此,设计人员可以在更短的勘探时间内调整NoC。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Mathematical Models Applied to On-Chip Network on FPGA for Resource Estimation
One main challenge of prototyping a SoC (System on Chip) on FPGA (Field Programmable Gate Array) is to tune at best the communication architecture according to the task graph of an application and the available resources of the chosen FPGA. The exploration of the potential design candidates is time consuming, tedious and does not scale. The sheer number of parameters leads to a wide design space that cannot be explored in a limited time. The aim of this paper is to identify mathematical models applied to NoC to estimate FPGA resources. Mathematical models are obtained from a database containing a set of observed results. Using the database, the Pearson's correlation coefficient and the variable clustering are used to set the most appropriate variables and constants. The mathematical models are obtained and then validated with a set of experimental results. The validation shows that the error rate between observed results and the analytically estimated results is less than 5%. The designer can therefore tune the NoC in shorter exploration time.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信