分布式存储计算机上的k -均值算法

M. Ng
{"title":"分布式存储计算机上的k -均值算法","authors":"M. Ng","doi":"10.1142/S0129053300000096","DOIUrl":null,"url":null,"abstract":"Partitioning a set of objects into homogeneous clusters is a fundamental operation in data mining. The k-means-type algorithm is best suited for implementing this operation because of its efficiency in clustering large numerical and categorical data sets. An efficient parallel k-means-type algorithm for clustering data sets on a distributed share-nothing parallel system is considered. It has a simple communication scheme which performs only one round of information exchange in every iteration. We show that the speedup of our algorithm is asymptotically linear when the number of objects is sufficiently large. We implement the parallel k-means-type algorithm on an IBM SP2 parallel machine. The performance studies show that the algorithm has nice parallelism in experiments.","PeriodicalId":270006,"journal":{"name":"Int. J. High Speed Comput.","volume":"160 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2000-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"12","resultStr":"{\"title\":\"K-Means-Type Algorithms on Distributed Memory Computer\",\"authors\":\"M. Ng\",\"doi\":\"10.1142/S0129053300000096\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Partitioning a set of objects into homogeneous clusters is a fundamental operation in data mining. The k-means-type algorithm is best suited for implementing this operation because of its efficiency in clustering large numerical and categorical data sets. An efficient parallel k-means-type algorithm for clustering data sets on a distributed share-nothing parallel system is considered. It has a simple communication scheme which performs only one round of information exchange in every iteration. We show that the speedup of our algorithm is asymptotically linear when the number of objects is sufficiently large. We implement the parallel k-means-type algorithm on an IBM SP2 parallel machine. The performance studies show that the algorithm has nice parallelism in experiments.\",\"PeriodicalId\":270006,\"journal\":{\"name\":\"Int. J. High Speed Comput.\",\"volume\":\"160 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2000-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"12\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Int. J. High Speed Comput.\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1142/S0129053300000096\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Int. J. High Speed Comput.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1142/S0129053300000096","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 12

摘要

将一组对象划分为同构簇是数据挖掘中的一项基本操作。k-均值型算法最适合实现这一操作,因为它在聚类大型数值和分类数据集时效率很高。研究了分布式无共享并行系统上数据集聚类的一种高效并行k-均值算法。它具有简单的通信方案,每次迭代只执行一轮信息交换。结果表明,当对象数量足够大时,算法的加速是渐近线性的。我们在IBM SP2并行机上实现了并行k-means型算法。实验结果表明,该算法具有良好的并行性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
K-Means-Type Algorithms on Distributed Memory Computer
Partitioning a set of objects into homogeneous clusters is a fundamental operation in data mining. The k-means-type algorithm is best suited for implementing this operation because of its efficiency in clustering large numerical and categorical data sets. An efficient parallel k-means-type algorithm for clustering data sets on a distributed share-nothing parallel system is considered. It has a simple communication scheme which performs only one round of information exchange in every iteration. We show that the speedup of our algorithm is asymptotically linear when the number of objects is sufficiently large. We implement the parallel k-means-type algorithm on an IBM SP2 parallel machine. The performance studies show that the algorithm has nice parallelism in experiments.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信