面向IT事件风险预测的多严重级别分类

Salman Ahmed, Muskaan Singh, Brendan Doherty, E. Ramlan, Kathryn Harkin, Damien Coyle
{"title":"面向IT事件风险预测的多严重级别分类","authors":"Salman Ahmed, Muskaan Singh, Brendan Doherty, E. Ramlan, Kathryn Harkin, Damien Coyle","doi":"10.1109/ISCMI56532.2022.10068477","DOIUrl":null,"url":null,"abstract":"The adoption of Artificial Intelligence (AI) is now widespread in Information Technology (IT) support. A particular area of interest is in the automation of IT incident management (i.e., the handling of an unusual event that hampers the quality of IT services in the most optimized manner). In this paper, we propose a framework using state-of-art algorithms to classify and predict the severity of such incidents (commonly labeled as High, Medium, and Low severity). We argue that the proposed framework would accelerate the process of handling IT incidents with improved accuracy. The experimentation was performed on the IT Service Management (ITSM) dataset containing 500,000 real-time incident descriptions with their encoded labels (Dataset 1) from a reputable IT firm. Our results showed that the Transformer models outperformed machine learning (ML) and other deep learning (DL) models with a 98% AUC score to predict the three severity classes. We tested our framework with an open-access dataset (Dataset 2) to further validate our findings. Our framework produced a 44% improvement in AUC score compared to the existing benchmark approaches. The results show the plausibility of AI algorithms in automating the prioritization of incident processing in large IT systems.","PeriodicalId":340397,"journal":{"name":"2022 9th International Conference on Soft Computing & Machine Intelligence (ISCMI)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-11-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Multiple Severity-Level Classifications for IT Incident Risk Prediction\",\"authors\":\"Salman Ahmed, Muskaan Singh, Brendan Doherty, E. Ramlan, Kathryn Harkin, Damien Coyle\",\"doi\":\"10.1109/ISCMI56532.2022.10068477\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The adoption of Artificial Intelligence (AI) is now widespread in Information Technology (IT) support. A particular area of interest is in the automation of IT incident management (i.e., the handling of an unusual event that hampers the quality of IT services in the most optimized manner). In this paper, we propose a framework using state-of-art algorithms to classify and predict the severity of such incidents (commonly labeled as High, Medium, and Low severity). We argue that the proposed framework would accelerate the process of handling IT incidents with improved accuracy. The experimentation was performed on the IT Service Management (ITSM) dataset containing 500,000 real-time incident descriptions with their encoded labels (Dataset 1) from a reputable IT firm. Our results showed that the Transformer models outperformed machine learning (ML) and other deep learning (DL) models with a 98% AUC score to predict the three severity classes. We tested our framework with an open-access dataset (Dataset 2) to further validate our findings. Our framework produced a 44% improvement in AUC score compared to the existing benchmark approaches. The results show the plausibility of AI algorithms in automating the prioritization of incident processing in large IT systems.\",\"PeriodicalId\":340397,\"journal\":{\"name\":\"2022 9th International Conference on Soft Computing & Machine Intelligence (ISCMI)\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-11-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 9th International Conference on Soft Computing & Machine Intelligence (ISCMI)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ISCMI56532.2022.10068477\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 9th International Conference on Soft Computing & Machine Intelligence (ISCMI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISCMI56532.2022.10068477","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

人工智能(AI)的采用现在在信息技术(IT)支持中得到广泛应用。一个特别感兴趣的领域是IT事件管理的自动化(即,以最优化的方式处理妨碍IT服务质量的异常事件)。在本文中,我们提出了一个框架,使用最先进的算法来分类和预测此类事件的严重程度(通常标记为高、中、低严重程度)。我们认为,建议的框架将加快处理IT事件的过程,并提高准确性。实验是在IT服务管理(ITSM)数据集上进行的,该数据集包含来自一家知名IT公司的500,000个实时事件描述及其编码标签(数据集1)。我们的结果表明,Transformer模型在预测三种严重程度类别方面的AUC得分为98%,优于机器学习(ML)和其他深度学习(DL)模型。我们用一个开放获取的数据集(数据集2)测试了我们的框架,以进一步验证我们的发现。与现有的基准方法相比,我们的框架在AUC得分方面提高了44%。结果表明,人工智能算法在大型IT系统中自动化事件处理优先级方面是可行的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Multiple Severity-Level Classifications for IT Incident Risk Prediction
The adoption of Artificial Intelligence (AI) is now widespread in Information Technology (IT) support. A particular area of interest is in the automation of IT incident management (i.e., the handling of an unusual event that hampers the quality of IT services in the most optimized manner). In this paper, we propose a framework using state-of-art algorithms to classify and predict the severity of such incidents (commonly labeled as High, Medium, and Low severity). We argue that the proposed framework would accelerate the process of handling IT incidents with improved accuracy. The experimentation was performed on the IT Service Management (ITSM) dataset containing 500,000 real-time incident descriptions with their encoded labels (Dataset 1) from a reputable IT firm. Our results showed that the Transformer models outperformed machine learning (ML) and other deep learning (DL) models with a 98% AUC score to predict the three severity classes. We tested our framework with an open-access dataset (Dataset 2) to further validate our findings. Our framework produced a 44% improvement in AUC score compared to the existing benchmark approaches. The results show the plausibility of AI algorithms in automating the prioritization of incident processing in large IT systems.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信