B. Bosworth, J. R. Stroud, D. Tran, T. Tran, S. Chin, M. Foster
{"title":"运动对比压缩高速流动显微镜(会议报告)","authors":"B. Bosworth, J. R. Stroud, D. Tran, T. Tran, S. Chin, M. Foster","doi":"10.1117/12.2216602","DOIUrl":null,"url":null,"abstract":"High-speed continuous imaging systems are constrained by analog-to-digital conversion, storage, and transmission. However, real video signals of objects such as microscopic cells and particles require only a few percent or less of the full video bandwidth for high fidelity representation by modern compression algorithms. Compressed Sensing (CS) is a recent influential paradigm in signal processing that builds real-time compression into the acquisition step by computing inner products between the signal of interest and known random waveforms and then applying a nonlinear reconstruction algorithm. Here, we extend the continuous high-rate photonically-enabled compressed sensing (CHiRP-CS) framework to acquire motion contrast video of microscopic flowing objects. We employ chirp processing in optical fiber and high-speed electro-optic modulation to produce ultrashort pulses each with a unique pseudorandom binary sequence (PRBS) spectral pattern with 325 features per pulse at the full laser repetition rate (90 MHz). These PRBS-patterned pulses serve as random structured illumination inside a one-dimensional (1D) spatial disperser. By multiplexing the PRBS patterns with a user-defined repetition period, the difference signal y_i=phi_i (x_i - x_{i-tau}) can be computed optically with balanced detection, where x is the image signal, phi_i is the PRBS pattern, and tau is the repetition period of the patterns. Two-dimensional (2D) image reconstruction via iterative alternating minimization to find the best locally-sparse representation yields an image of the edges in the flow direction, corresponding to the spatial and temporal 1D derivative. This provides both a favorable representation for image segmentation and a sparser representation for many objects that can improve image compression.","PeriodicalId":227483,"journal":{"name":"SPIE BiOS","volume":"14 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-06-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Compressive high speed flow microscopy with motion contrast (Conference Presentation)\",\"authors\":\"B. Bosworth, J. R. Stroud, D. Tran, T. Tran, S. Chin, M. Foster\",\"doi\":\"10.1117/12.2216602\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"High-speed continuous imaging systems are constrained by analog-to-digital conversion, storage, and transmission. However, real video signals of objects such as microscopic cells and particles require only a few percent or less of the full video bandwidth for high fidelity representation by modern compression algorithms. Compressed Sensing (CS) is a recent influential paradigm in signal processing that builds real-time compression into the acquisition step by computing inner products between the signal of interest and known random waveforms and then applying a nonlinear reconstruction algorithm. Here, we extend the continuous high-rate photonically-enabled compressed sensing (CHiRP-CS) framework to acquire motion contrast video of microscopic flowing objects. We employ chirp processing in optical fiber and high-speed electro-optic modulation to produce ultrashort pulses each with a unique pseudorandom binary sequence (PRBS) spectral pattern with 325 features per pulse at the full laser repetition rate (90 MHz). These PRBS-patterned pulses serve as random structured illumination inside a one-dimensional (1D) spatial disperser. By multiplexing the PRBS patterns with a user-defined repetition period, the difference signal y_i=phi_i (x_i - x_{i-tau}) can be computed optically with balanced detection, where x is the image signal, phi_i is the PRBS pattern, and tau is the repetition period of the patterns. Two-dimensional (2D) image reconstruction via iterative alternating minimization to find the best locally-sparse representation yields an image of the edges in the flow direction, corresponding to the spatial and temporal 1D derivative. This provides both a favorable representation for image segmentation and a sparser representation for many objects that can improve image compression.\",\"PeriodicalId\":227483,\"journal\":{\"name\":\"SPIE BiOS\",\"volume\":\"14 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-06-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"SPIE BiOS\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1117/12.2216602\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"SPIE BiOS","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1117/12.2216602","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Compressive high speed flow microscopy with motion contrast (Conference Presentation)
High-speed continuous imaging systems are constrained by analog-to-digital conversion, storage, and transmission. However, real video signals of objects such as microscopic cells and particles require only a few percent or less of the full video bandwidth for high fidelity representation by modern compression algorithms. Compressed Sensing (CS) is a recent influential paradigm in signal processing that builds real-time compression into the acquisition step by computing inner products between the signal of interest and known random waveforms and then applying a nonlinear reconstruction algorithm. Here, we extend the continuous high-rate photonically-enabled compressed sensing (CHiRP-CS) framework to acquire motion contrast video of microscopic flowing objects. We employ chirp processing in optical fiber and high-speed electro-optic modulation to produce ultrashort pulses each with a unique pseudorandom binary sequence (PRBS) spectral pattern with 325 features per pulse at the full laser repetition rate (90 MHz). These PRBS-patterned pulses serve as random structured illumination inside a one-dimensional (1D) spatial disperser. By multiplexing the PRBS patterns with a user-defined repetition period, the difference signal y_i=phi_i (x_i - x_{i-tau}) can be computed optically with balanced detection, where x is the image signal, phi_i is the PRBS pattern, and tau is the repetition period of the patterns. Two-dimensional (2D) image reconstruction via iterative alternating minimization to find the best locally-sparse representation yields an image of the edges in the flow direction, corresponding to the spatial and temporal 1D derivative. This provides both a favorable representation for image segmentation and a sparser representation for many objects that can improve image compression.