通过仿真方法深入了解SMR性能

Junpeng Niu, Jun Xu, Lihua Xie
{"title":"通过仿真方法深入了解SMR性能","authors":"Junpeng Niu, Jun Xu, Lihua Xie","doi":"10.1109/ICCA.2017.8003147","DOIUrl":null,"url":null,"abstract":"In Shingled Magnetic Recording (SMR) drives, sequential write, indirect address mapping and garbage collection (GC) are three main unique features. To plenarily utilize these properties, there are many new specific algorithms designed to improve the performance, e.g., batch write policies and active GC algorithms. To analyze those designs, a simulation model is developed to estimate the performance under different system parameters and workload properties. The simulation results thus provide plausible guidance of SMR drive design.","PeriodicalId":379025,"journal":{"name":"2017 13th IEEE International Conference on Control & Automation (ICCA)","volume":"64 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"A deep look at SMR performance via simulation approach\",\"authors\":\"Junpeng Niu, Jun Xu, Lihua Xie\",\"doi\":\"10.1109/ICCA.2017.8003147\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In Shingled Magnetic Recording (SMR) drives, sequential write, indirect address mapping and garbage collection (GC) are three main unique features. To plenarily utilize these properties, there are many new specific algorithms designed to improve the performance, e.g., batch write policies and active GC algorithms. To analyze those designs, a simulation model is developed to estimate the performance under different system parameters and workload properties. The simulation results thus provide plausible guidance of SMR drive design.\",\"PeriodicalId\":379025,\"journal\":{\"name\":\"2017 13th IEEE International Conference on Control & Automation (ICCA)\",\"volume\":\"64 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2017 13th IEEE International Conference on Control & Automation (ICCA)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICCA.2017.8003147\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 13th IEEE International Conference on Control & Automation (ICCA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCA.2017.8003147","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

在带状磁记录(SMR)驱动器中,顺序写入、间接地址映射和垃圾收集(GC)是三个主要的独特特性。为了充分利用这些属性,有许多新的特定算法被设计用来提高性能,例如,批写策略和活动GC算法。为了分析这些设计,建立了仿真模型来估计不同系统参数和工作负载特性下的性能。仿真结果为SMR驱动器的设计提供了合理的指导。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A deep look at SMR performance via simulation approach
In Shingled Magnetic Recording (SMR) drives, sequential write, indirect address mapping and garbage collection (GC) are three main unique features. To plenarily utilize these properties, there are many new specific algorithms designed to improve the performance, e.g., batch write policies and active GC algorithms. To analyze those designs, a simulation model is developed to estimate the performance under different system parameters and workload properties. The simulation results thus provide plausible guidance of SMR drive design.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信