{"title":"图论与自催化网络的演化","authors":"Sanjay Jain, Sandeep Krishna","doi":"10.1002/3527602755.CH16","DOIUrl":null,"url":null,"abstract":"We give a self-contained introduction to the theory of directed graphs, leading up to the relationship between the Perron-Frobenius eigenvectors of a graph and its autocatalytic sets. Then we discuss a particular dynamical system on a fixed but arbitrary graph, that describes the population dynamics of species whose interactions are determined by the graph. The attractors of this dynamical system are described as a function of graph topology. Finally we consider a dynamical system in which the graph of interactions of the species coevolves with the populations of the species. We show that this system exhibits complex dynamics including self-organization of the network by autocatalytic sets, growth of complexity and structure, and collapse of the network followed by recoveries. We argue that a graph theoretic classification of perturbations of the network is helpful in predicting the future impact of a perturbation over short and medium time scales.","PeriodicalId":139082,"journal":{"name":"arXiv: Adaptation and Self-Organizing Systems","volume":"65 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2002-10-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"58","resultStr":"{\"title\":\"Graph Theory and the Evolution of Autocatalytic Networks\",\"authors\":\"Sanjay Jain, Sandeep Krishna\",\"doi\":\"10.1002/3527602755.CH16\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We give a self-contained introduction to the theory of directed graphs, leading up to the relationship between the Perron-Frobenius eigenvectors of a graph and its autocatalytic sets. Then we discuss a particular dynamical system on a fixed but arbitrary graph, that describes the population dynamics of species whose interactions are determined by the graph. The attractors of this dynamical system are described as a function of graph topology. Finally we consider a dynamical system in which the graph of interactions of the species coevolves with the populations of the species. We show that this system exhibits complex dynamics including self-organization of the network by autocatalytic sets, growth of complexity and structure, and collapse of the network followed by recoveries. We argue that a graph theoretic classification of perturbations of the network is helpful in predicting the future impact of a perturbation over short and medium time scales.\",\"PeriodicalId\":139082,\"journal\":{\"name\":\"arXiv: Adaptation and Self-Organizing Systems\",\"volume\":\"65 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2002-10-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"58\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv: Adaptation and Self-Organizing Systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1002/3527602755.CH16\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv: Adaptation and Self-Organizing Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1002/3527602755.CH16","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Graph Theory and the Evolution of Autocatalytic Networks
We give a self-contained introduction to the theory of directed graphs, leading up to the relationship between the Perron-Frobenius eigenvectors of a graph and its autocatalytic sets. Then we discuss a particular dynamical system on a fixed but arbitrary graph, that describes the population dynamics of species whose interactions are determined by the graph. The attractors of this dynamical system are described as a function of graph topology. Finally we consider a dynamical system in which the graph of interactions of the species coevolves with the populations of the species. We show that this system exhibits complex dynamics including self-organization of the network by autocatalytic sets, growth of complexity and structure, and collapse of the network followed by recoveries. We argue that a graph theoretic classification of perturbations of the network is helpful in predicting the future impact of a perturbation over short and medium time scales.