F. Naufal, Yulison Herry Chrisnanto, Ade Kania Ningsih
{"title":"在线商店的产品报价推荐系统使用了K-Means Clustering","authors":"F. Naufal, Yulison Herry Chrisnanto, Ade Kania Ningsih","doi":"10.36423/index.v4i1.879","DOIUrl":null,"url":null,"abstract":"Online Shop adalah salah satu fasilitas yang disajikan oleh internet, yang mampu mempermudah masyarakat dalam belanja tanpa harus bertatap muka dengan pelanggan, tanpa harus antri dan tawar menawar. Pertumbuhan ekonomi digital semakin besar persaingan bisnis juga akan semakin berat, akibatnya semakin banyak online shop tidak hanya menampilkan produk-produk tetapi juga perlu didukung oleh pemilihan produk yang tepat untuk menarik perhatian pelanggan. Terlalu banyaknya variasi produk yang ditawarkan secara random (acak) pada online shop membuat beberapa pelanggan kesulitan dalam menentukan produk yang akan dibeli. Berdasarkan permasalahan yang muncul maka penelitian mengenai Sistem Rekomendasi Penawaran Produk Pada Online Shop Menggunakan K-Means Clustering ini dilakukan. Sistem ini menggunakan algoritma K-Means Clustering serta dataset yang digunakan adalah data transaksi penjualan dari kurun waktu 1 tahun terakhir agar cakupanya tidak meluas dengan menggunakan data terbaru. Hasil dari penelitian ini ditemumakan bahwa ada 3 cluster yang memiliki karakteristik berbeda yaitu, cluster 1 dengan karakteristik penjualan sedang dengan rentang umur pembeli 36-50 tahun , cluster 2 dengan karakteristik penjualan terbanyak dengan rentang umur pembeli 18-26 tahun dan cluster 3 dengan karakteristik penjualan rendah dengan rentang umur 27-35 tahun. Dari hasil cluster dapat disimpulkan bahwa produk yang direkomendasikan merupakan produk terpopuluer dari setiap clusternya. Hasil perhitungan nilai sillhouette coeficient didapatkan cluster dengan jumlah 3 karena memiki nilai paling mendekati Si = 1 yaitu dengan nilai 0.7354092263523232.","PeriodicalId":355867,"journal":{"name":"Informatics and Digital Expert (INDEX)","volume":"2008 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-07-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Sistem Rekomendasi Penawaran Produk Pada Online Shop Menggunakan K-Means Clustering\",\"authors\":\"F. Naufal, Yulison Herry Chrisnanto, Ade Kania Ningsih\",\"doi\":\"10.36423/index.v4i1.879\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Online Shop adalah salah satu fasilitas yang disajikan oleh internet, yang mampu mempermudah masyarakat dalam belanja tanpa harus bertatap muka dengan pelanggan, tanpa harus antri dan tawar menawar. Pertumbuhan ekonomi digital semakin besar persaingan bisnis juga akan semakin berat, akibatnya semakin banyak online shop tidak hanya menampilkan produk-produk tetapi juga perlu didukung oleh pemilihan produk yang tepat untuk menarik perhatian pelanggan. Terlalu banyaknya variasi produk yang ditawarkan secara random (acak) pada online shop membuat beberapa pelanggan kesulitan dalam menentukan produk yang akan dibeli. Berdasarkan permasalahan yang muncul maka penelitian mengenai Sistem Rekomendasi Penawaran Produk Pada Online Shop Menggunakan K-Means Clustering ini dilakukan. Sistem ini menggunakan algoritma K-Means Clustering serta dataset yang digunakan adalah data transaksi penjualan dari kurun waktu 1 tahun terakhir agar cakupanya tidak meluas dengan menggunakan data terbaru. Hasil dari penelitian ini ditemumakan bahwa ada 3 cluster yang memiliki karakteristik berbeda yaitu, cluster 1 dengan karakteristik penjualan sedang dengan rentang umur pembeli 36-50 tahun , cluster 2 dengan karakteristik penjualan terbanyak dengan rentang umur pembeli 18-26 tahun dan cluster 3 dengan karakteristik penjualan rendah dengan rentang umur 27-35 tahun. Dari hasil cluster dapat disimpulkan bahwa produk yang direkomendasikan merupakan produk terpopuluer dari setiap clusternya. Hasil perhitungan nilai sillhouette coeficient didapatkan cluster dengan jumlah 3 karena memiki nilai paling mendekati Si = 1 yaitu dengan nilai 0.7354092263523232.\",\"PeriodicalId\":355867,\"journal\":{\"name\":\"Informatics and Digital Expert (INDEX)\",\"volume\":\"2008 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-07-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Informatics and Digital Expert (INDEX)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.36423/index.v4i1.879\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Informatics and Digital Expert (INDEX)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.36423/index.v4i1.879","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Sistem Rekomendasi Penawaran Produk Pada Online Shop Menggunakan K-Means Clustering
Online Shop adalah salah satu fasilitas yang disajikan oleh internet, yang mampu mempermudah masyarakat dalam belanja tanpa harus bertatap muka dengan pelanggan, tanpa harus antri dan tawar menawar. Pertumbuhan ekonomi digital semakin besar persaingan bisnis juga akan semakin berat, akibatnya semakin banyak online shop tidak hanya menampilkan produk-produk tetapi juga perlu didukung oleh pemilihan produk yang tepat untuk menarik perhatian pelanggan. Terlalu banyaknya variasi produk yang ditawarkan secara random (acak) pada online shop membuat beberapa pelanggan kesulitan dalam menentukan produk yang akan dibeli. Berdasarkan permasalahan yang muncul maka penelitian mengenai Sistem Rekomendasi Penawaran Produk Pada Online Shop Menggunakan K-Means Clustering ini dilakukan. Sistem ini menggunakan algoritma K-Means Clustering serta dataset yang digunakan adalah data transaksi penjualan dari kurun waktu 1 tahun terakhir agar cakupanya tidak meluas dengan menggunakan data terbaru. Hasil dari penelitian ini ditemumakan bahwa ada 3 cluster yang memiliki karakteristik berbeda yaitu, cluster 1 dengan karakteristik penjualan sedang dengan rentang umur pembeli 36-50 tahun , cluster 2 dengan karakteristik penjualan terbanyak dengan rentang umur pembeli 18-26 tahun dan cluster 3 dengan karakteristik penjualan rendah dengan rentang umur 27-35 tahun. Dari hasil cluster dapat disimpulkan bahwa produk yang direkomendasikan merupakan produk terpopuluer dari setiap clusternya. Hasil perhitungan nilai sillhouette coeficient didapatkan cluster dengan jumlah 3 karena memiki nilai paling mendekati Si = 1 yaitu dengan nilai 0.7354092263523232.