E. Hege, M. Cheselka, M. Lloyd-Hart, P. Hinz, W. Hoffmann, J. Christou, S. Jefferies
{"title":"利用物理约束迭代反褶积的天文结果","authors":"E. Hege, M. Cheselka, M. Lloyd-Hart, P. Hinz, W. Hoffmann, J. Christou, S. Jefferies","doi":"10.1364/srs.1998.stub.3","DOIUrl":null,"url":null,"abstract":"Iterative physical deconvolution is used for point spread function (psf) calibration of a wide range of astronomical imagery obtained in visible (CCD) through near- and mid-infrared (NICMOS and MIRAC) wavelengths. Psf complications, ranging from those of uncorrected speckle images at large telescopes to those of contemporary high-performance adaptive optics, are accomodated by this algorithm which makes use of a priori physical information about the imaging system. Examples of diffraction-limited and “super-resolved” results are presented for a variety of different astronomical objects.","PeriodicalId":184407,"journal":{"name":"Signal Recovery and Synthesis","volume":"1225 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Astronomical Results using Physically-Constrained Iterative Deconvolution\",\"authors\":\"E. Hege, M. Cheselka, M. Lloyd-Hart, P. Hinz, W. Hoffmann, J. Christou, S. Jefferies\",\"doi\":\"10.1364/srs.1998.stub.3\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Iterative physical deconvolution is used for point spread function (psf) calibration of a wide range of astronomical imagery obtained in visible (CCD) through near- and mid-infrared (NICMOS and MIRAC) wavelengths. Psf complications, ranging from those of uncorrected speckle images at large telescopes to those of contemporary high-performance adaptive optics, are accomodated by this algorithm which makes use of a priori physical information about the imaging system. Examples of diffraction-limited and “super-resolved” results are presented for a variety of different astronomical objects.\",\"PeriodicalId\":184407,\"journal\":{\"name\":\"Signal Recovery and Synthesis\",\"volume\":\"1225 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1900-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Signal Recovery and Synthesis\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1364/srs.1998.stub.3\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Signal Recovery and Synthesis","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1364/srs.1998.stub.3","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Astronomical Results using Physically-Constrained Iterative Deconvolution
Iterative physical deconvolution is used for point spread function (psf) calibration of a wide range of astronomical imagery obtained in visible (CCD) through near- and mid-infrared (NICMOS and MIRAC) wavelengths. Psf complications, ranging from those of uncorrected speckle images at large telescopes to those of contemporary high-performance adaptive optics, are accomodated by this algorithm which makes use of a priori physical information about the imaging system. Examples of diffraction-limited and “super-resolved” results are presented for a variety of different astronomical objects.