用向量引擎支持系统和天真的贝斯来预测糖尿病

Nurlaelatul Maulidah, Riki Supriyadi, Dwi yuni Utami, F. Hasan, A. Fauzi, Ade Christian
{"title":"用向量引擎支持系统和天真的贝斯来预测糖尿病","authors":"Nurlaelatul Maulidah, Riki Supriyadi, Dwi yuni Utami, F. Hasan, A. Fauzi, Ade Christian","doi":"10.31294/IJSE.V7I1.10279","DOIUrl":null,"url":null,"abstract":"Diabetes melitus adalah penyakit metabolik yang ditandai terjadinya kenaikan gula darah yang disebabkan oleh terganggunya hormon insulin yang memiliki fungsi sebagai hormon dalam menjaga homeostatis tubuh menggunakan cara penurunan kadar gula darah (American Diabetes Association, 2017). World Health Organization (WHO) memperkirakan jumlah penderita diabetes melitus orang dewasa diatas 18 tahun dalam tahun 2014 berjumlah 422 juta (WHO, 2016:25). Prevalensi diabetes melitus Asia Tenggara sudah berkembang dalam tahun 1980 sebanyak 4,1% dan tahun 2014 menjadi sebanyak 8,6%. Menurut Riset Kementerian Kesehatan pada tahun 2018, Prevalensi diabetes Indonesia sebanyak 2,0%, sedangkan di Provinsi Jawa Timur sebanyak 2,6% pada penduduk umur diatas 15 tahun (KEMENKES RI, 2019). Penelitian ini dikembangkan melalui pengolahan data sekunder database kesehatan Dataset Diabetes yang diambil dari dataset Kaggle dan dapat diakses melalui https://www.kaggle.com/johndasilva/diabetes. Dimana datanya sendiri terdiri dari 2000 record dengan beberapa variabel prediktor medik (Pregnancies/Kehamilan, Glucose/Glukosa, BloodPressure/Tekanan Darah, SkinThickness/Ketebalan Kulit, Insulin, BMI/Indeks Masa Tubuh, DiabetesPedigreeFunction/Keturunan, Age/Umur and Outcome/Hasil). Kemudian data tersebut akan diolah dengan menggunakan metode Support Vector Machine dan metode Naive Bayes untuk mengetahui akurasi hasil diagnosa diabetes. Berdasarkan hasil dari penelitian yang sudah dilakukan metode Support Vector Machine memiliki nilai akurasi yang jauh lebih tinggi dibandingkan dengan menggunakan metode Naive Bayes. Nilai akurasi untuk model metode Support Vector Machine adalah 78,04% dan nilai akurasi untuk metode Naive Bayes 76,98%. Berdasarkan nilai ini, perbedaan akurasinya adalah 1,06%. Sehingga dapat disimpulkan bahwa penerapan metode Support Vector Machine mampu menghasilkan tingkat akurasi diagnosis diabetes yang lebih baik dibandingkan dengan menggunakan metode Naive Bayes.","PeriodicalId":175708,"journal":{"name":"Indonesian Journal on Software Engineering (IJSE)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-06-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Prediksi Penyakit Diabetes Melitus Menggunakan Metode Support Vector Machine dan Naive Bayes\",\"authors\":\"Nurlaelatul Maulidah, Riki Supriyadi, Dwi yuni Utami, F. Hasan, A. Fauzi, Ade Christian\",\"doi\":\"10.31294/IJSE.V7I1.10279\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Diabetes melitus adalah penyakit metabolik yang ditandai terjadinya kenaikan gula darah yang disebabkan oleh terganggunya hormon insulin yang memiliki fungsi sebagai hormon dalam menjaga homeostatis tubuh menggunakan cara penurunan kadar gula darah (American Diabetes Association, 2017). World Health Organization (WHO) memperkirakan jumlah penderita diabetes melitus orang dewasa diatas 18 tahun dalam tahun 2014 berjumlah 422 juta (WHO, 2016:25). Prevalensi diabetes melitus Asia Tenggara sudah berkembang dalam tahun 1980 sebanyak 4,1% dan tahun 2014 menjadi sebanyak 8,6%. Menurut Riset Kementerian Kesehatan pada tahun 2018, Prevalensi diabetes Indonesia sebanyak 2,0%, sedangkan di Provinsi Jawa Timur sebanyak 2,6% pada penduduk umur diatas 15 tahun (KEMENKES RI, 2019). Penelitian ini dikembangkan melalui pengolahan data sekunder database kesehatan Dataset Diabetes yang diambil dari dataset Kaggle dan dapat diakses melalui https://www.kaggle.com/johndasilva/diabetes. Dimana datanya sendiri terdiri dari 2000 record dengan beberapa variabel prediktor medik (Pregnancies/Kehamilan, Glucose/Glukosa, BloodPressure/Tekanan Darah, SkinThickness/Ketebalan Kulit, Insulin, BMI/Indeks Masa Tubuh, DiabetesPedigreeFunction/Keturunan, Age/Umur and Outcome/Hasil). Kemudian data tersebut akan diolah dengan menggunakan metode Support Vector Machine dan metode Naive Bayes untuk mengetahui akurasi hasil diagnosa diabetes. Berdasarkan hasil dari penelitian yang sudah dilakukan metode Support Vector Machine memiliki nilai akurasi yang jauh lebih tinggi dibandingkan dengan menggunakan metode Naive Bayes. Nilai akurasi untuk model metode Support Vector Machine adalah 78,04% dan nilai akurasi untuk metode Naive Bayes 76,98%. Berdasarkan nilai ini, perbedaan akurasinya adalah 1,06%. Sehingga dapat disimpulkan bahwa penerapan metode Support Vector Machine mampu menghasilkan tingkat akurasi diagnosis diabetes yang lebih baik dibandingkan dengan menggunakan metode Naive Bayes.\",\"PeriodicalId\":175708,\"journal\":{\"name\":\"Indonesian Journal on Software Engineering (IJSE)\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-06-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Indonesian Journal on Software Engineering (IJSE)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.31294/IJSE.V7I1.10279\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Indonesian Journal on Software Engineering (IJSE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.31294/IJSE.V7I1.10279","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

摘要

糖尿病是一种代谢疾病,其特征是胰岛素激素的紊乱导致血糖升高,胰岛素是一种激素,其功能是保持体内的血糖水平降低(美国糖尿病协会,2017)。据世界卫生组织(WHO)估计,2014年18岁以上的成年人中,患病人数为4.22万(世卫组织2016:25)。东南亚糖尿病的流行程度在1980年达到4.1%,2014年达到8.6%。根据卫生部在2018年的研究,印尼糖尿病的流行率为2.0%,而在东爪哇省,15岁以上人口的患病率为2.6%(内政部,2019)。这项研究是通过从Dataset kaggle.com/https://www.kaggle.com/johndasilva/糖尿病中获取的糖尿病健康数据库的辅助数据来开发的。他的数据由2000张记录组成,记录了几种不同的医疗预测变量。然后,这些数据将使用支持机和天真贝斯的方法来确定糖尿病诊断的准确性。基于对矢量引擎支持方法的研究结果,它的准确率远远高于天真Bayes方法。支持矢量引擎模型的准确性值为78.04%,而Naive Bayes方法的准确性值为76.98%。根据这个值,准确率差为106%。因此,我们可以得出结论,使用支持向量机的方法比使用天真的贝斯方法更能准确地诊断出糖尿病。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Prediksi Penyakit Diabetes Melitus Menggunakan Metode Support Vector Machine dan Naive Bayes
Diabetes melitus adalah penyakit metabolik yang ditandai terjadinya kenaikan gula darah yang disebabkan oleh terganggunya hormon insulin yang memiliki fungsi sebagai hormon dalam menjaga homeostatis tubuh menggunakan cara penurunan kadar gula darah (American Diabetes Association, 2017). World Health Organization (WHO) memperkirakan jumlah penderita diabetes melitus orang dewasa diatas 18 tahun dalam tahun 2014 berjumlah 422 juta (WHO, 2016:25). Prevalensi diabetes melitus Asia Tenggara sudah berkembang dalam tahun 1980 sebanyak 4,1% dan tahun 2014 menjadi sebanyak 8,6%. Menurut Riset Kementerian Kesehatan pada tahun 2018, Prevalensi diabetes Indonesia sebanyak 2,0%, sedangkan di Provinsi Jawa Timur sebanyak 2,6% pada penduduk umur diatas 15 tahun (KEMENKES RI, 2019). Penelitian ini dikembangkan melalui pengolahan data sekunder database kesehatan Dataset Diabetes yang diambil dari dataset Kaggle dan dapat diakses melalui https://www.kaggle.com/johndasilva/diabetes. Dimana datanya sendiri terdiri dari 2000 record dengan beberapa variabel prediktor medik (Pregnancies/Kehamilan, Glucose/Glukosa, BloodPressure/Tekanan Darah, SkinThickness/Ketebalan Kulit, Insulin, BMI/Indeks Masa Tubuh, DiabetesPedigreeFunction/Keturunan, Age/Umur and Outcome/Hasil). Kemudian data tersebut akan diolah dengan menggunakan metode Support Vector Machine dan metode Naive Bayes untuk mengetahui akurasi hasil diagnosa diabetes. Berdasarkan hasil dari penelitian yang sudah dilakukan metode Support Vector Machine memiliki nilai akurasi yang jauh lebih tinggi dibandingkan dengan menggunakan metode Naive Bayes. Nilai akurasi untuk model metode Support Vector Machine adalah 78,04% dan nilai akurasi untuk metode Naive Bayes 76,98%. Berdasarkan nilai ini, perbedaan akurasinya adalah 1,06%. Sehingga dapat disimpulkan bahwa penerapan metode Support Vector Machine mampu menghasilkan tingkat akurasi diagnosis diabetes yang lebih baik dibandingkan dengan menggunakan metode Naive Bayes.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信