基于yolov4语义信息提取的室内场景目标提取算法研究

Jin Wang, Xiaobo Sun, Mingze Wang, Changwu Li, Xiaoman Tang
{"title":"基于yolov4语义信息提取的室内场景目标提取算法研究","authors":"Jin Wang, Xiaobo Sun, Mingze Wang, Changwu Li, Xiaoman Tang","doi":"10.1145/3603781.3603864","DOIUrl":null,"url":null,"abstract":"This paper investigates the semantic information extraction algorithm for indoor scene targets. The YOLOv4 algorithm is preferred, and the Leaky ReLU function is preferred as the new activation function scheme through the typical activation function comparison experiments to address the problems of YOLOv4 activation function preference and poor multi-scale representation of indoor targets; the attention fusion mechanism is introduced to improve the classification accuracy of the network. Experiments on the homemade Indoor-COCO indoor scene dataset show that the detection accuracy reaches 42.09%, which improves the accuracy of semantic information.","PeriodicalId":391180,"journal":{"name":"Proceedings of the 2023 4th International Conference on Computing, Networks and Internet of Things","volume":"435 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-05-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"YOLOv4-based semantic information extraction for indoor scene targets fetching algorithm research\",\"authors\":\"Jin Wang, Xiaobo Sun, Mingze Wang, Changwu Li, Xiaoman Tang\",\"doi\":\"10.1145/3603781.3603864\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper investigates the semantic information extraction algorithm for indoor scene targets. The YOLOv4 algorithm is preferred, and the Leaky ReLU function is preferred as the new activation function scheme through the typical activation function comparison experiments to address the problems of YOLOv4 activation function preference and poor multi-scale representation of indoor targets; the attention fusion mechanism is introduced to improve the classification accuracy of the network. Experiments on the homemade Indoor-COCO indoor scene dataset show that the detection accuracy reaches 42.09%, which improves the accuracy of semantic information.\",\"PeriodicalId\":391180,\"journal\":{\"name\":\"Proceedings of the 2023 4th International Conference on Computing, Networks and Internet of Things\",\"volume\":\"435 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-05-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 2023 4th International Conference on Computing, Networks and Internet of Things\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3603781.3603864\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2023 4th International Conference on Computing, Networks and Internet of Things","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3603781.3603864","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

研究了室内场景目标的语义信息提取算法。通过典型激活函数对比实验,优选YOLOv4算法,并优选Leaky ReLU函数作为新的激活函数方案,解决YOLOv4激活函数偏好和室内目标多尺度表征差的问题;为了提高网络的分类精度,引入了注意力融合机制。在自制的indoor - coco室内场景数据集上进行的实验表明,检测准确率达到42.09%,提高了语义信息的准确性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
YOLOv4-based semantic information extraction for indoor scene targets fetching algorithm research
This paper investigates the semantic information extraction algorithm for indoor scene targets. The YOLOv4 algorithm is preferred, and the Leaky ReLU function is preferred as the new activation function scheme through the typical activation function comparison experiments to address the problems of YOLOv4 activation function preference and poor multi-scale representation of indoor targets; the attention fusion mechanism is introduced to improve the classification accuracy of the network. Experiments on the homemade Indoor-COCO indoor scene dataset show that the detection accuracy reaches 42.09%, which improves the accuracy of semantic information.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信