张量核上WY表示的快速对称特征值分解

Shaoshuai Zhang, Ruchi Shah, Hiroyuki Ootomo, Rio Yokota, Panruo Wu
{"title":"张量核上WY表示的快速对称特征值分解","authors":"Shaoshuai Zhang, Ruchi Shah, Hiroyuki Ootomo, Rio Yokota, Panruo Wu","doi":"10.1145/3572848.3577516","DOIUrl":null,"url":null,"abstract":"Symmetric eigenvalue decomposition (EVD) is a fundamental analytic and numerical tool used in many scientific areas. The state-of-the-art algorithm in terms of performance is typically the two-stage tridiagonalization method. The first stage in the two-stage tridiagonalization is called successive band reduction (SBR), which reduces a symmetric matrix to a band form, and its computational cost usually dominates. When Tensor Core (specialized matrix computational accelerator) is used to accelerate the expensive EVD, the conventional ZY-representation-based method results in suboptimal performance due to unfavorable shapes of the matrix computations. In this paper, we propose a new method that uses WY representation instead of ZY representation (see Section 3.2 for details), which can provide a better combination of locality and parallelism so as to perform better on Tensor Cores. Experimentally, the proposed method can bring up to 3.7x speedup in SBR and 2.3x in the entire EVD compared to state-of-the-art implementations.","PeriodicalId":233744,"journal":{"name":"Proceedings of the 28th ACM SIGPLAN Annual Symposium on Principles and Practice of Parallel Programming","volume":"23 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-02-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Fast Symmetric Eigenvalue Decomposition via WY Representation on Tensor Core\",\"authors\":\"Shaoshuai Zhang, Ruchi Shah, Hiroyuki Ootomo, Rio Yokota, Panruo Wu\",\"doi\":\"10.1145/3572848.3577516\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Symmetric eigenvalue decomposition (EVD) is a fundamental analytic and numerical tool used in many scientific areas. The state-of-the-art algorithm in terms of performance is typically the two-stage tridiagonalization method. The first stage in the two-stage tridiagonalization is called successive band reduction (SBR), which reduces a symmetric matrix to a band form, and its computational cost usually dominates. When Tensor Core (specialized matrix computational accelerator) is used to accelerate the expensive EVD, the conventional ZY-representation-based method results in suboptimal performance due to unfavorable shapes of the matrix computations. In this paper, we propose a new method that uses WY representation instead of ZY representation (see Section 3.2 for details), which can provide a better combination of locality and parallelism so as to perform better on Tensor Cores. Experimentally, the proposed method can bring up to 3.7x speedup in SBR and 2.3x in the entire EVD compared to state-of-the-art implementations.\",\"PeriodicalId\":233744,\"journal\":{\"name\":\"Proceedings of the 28th ACM SIGPLAN Annual Symposium on Principles and Practice of Parallel Programming\",\"volume\":\"23 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-02-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 28th ACM SIGPLAN Annual Symposium on Principles and Practice of Parallel Programming\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3572848.3577516\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 28th ACM SIGPLAN Annual Symposium on Principles and Practice of Parallel Programming","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3572848.3577516","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

对称特征值分解(EVD)是一种用于许多科学领域的基本分析和数值工具。就性能而言,最先进的算法通常是两阶段三对角化方法。两阶段三对角化的第一阶段称为连续带约简(SBR),它将对称矩阵约简为带形式,其计算成本通常占主导地位。当使用Tensor Core(专门的矩阵计算加速器)加速昂贵的EVD时,由于矩阵计算的不利形状,传统的基于zy表示的方法导致性能不佳。在本文中,我们提出了一种使用WY表示代替ZY表示的新方法(详见3.2节),它可以更好地结合局域性和并行性,从而在张量核上表现更好。实验表明,与目前的实现方法相比,该方法可以将SBR的加速提高3.7倍,将整个EVD的加速提高2.3倍。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Fast Symmetric Eigenvalue Decomposition via WY Representation on Tensor Core
Symmetric eigenvalue decomposition (EVD) is a fundamental analytic and numerical tool used in many scientific areas. The state-of-the-art algorithm in terms of performance is typically the two-stage tridiagonalization method. The first stage in the two-stage tridiagonalization is called successive band reduction (SBR), which reduces a symmetric matrix to a band form, and its computational cost usually dominates. When Tensor Core (specialized matrix computational accelerator) is used to accelerate the expensive EVD, the conventional ZY-representation-based method results in suboptimal performance due to unfavorable shapes of the matrix computations. In this paper, we propose a new method that uses WY representation instead of ZY representation (see Section 3.2 for details), which can provide a better combination of locality and parallelism so as to perform better on Tensor Cores. Experimentally, the proposed method can bring up to 3.7x speedup in SBR and 2.3x in the entire EVD compared to state-of-the-art implementations.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信