面向事件的网络新闻门户地图提取:雅加达白喉暴发和洪水的二元地图案例研究

A. Dewandaru, S. Supriana, Saiful Akbar
{"title":"面向事件的网络新闻门户地图提取:雅加达白喉暴发和洪水的二元地图案例研究","authors":"A. Dewandaru, S. Supriana, Saiful Akbar","doi":"10.1109/ICAICTA.2018.8541345","DOIUrl":null,"url":null,"abstract":"The abundance of online news texts which contain embedded geographical name references from the internet provide motivation to produce higher level analysis in the form of thematic maps. This can be done by a performing automated geospatial information extraction and retrieval from relevant event-oriented corpora which mainly existed in natural language form. However, unified methods and framework available to address this transformation is still lacking. We propose the incorporation of unsupervised topic modeling and word embedding to help accomplishing the task of aggregating georeferenced data. The topic modeling tool would help suggesting the positive keywords and negative keywords for particular topic while the word embedding helped improve the recall score by extending the semanticaly similar keywords. The method was tested on Indonesian news corpus and achieved comparable result on two offical binary thematic maps case studies based on flood event in Jakarta and diphteria disease in Indonesia.","PeriodicalId":184882,"journal":{"name":"2018 5th International Conference on Advanced Informatics: Concept Theory and Applications (ICAICTA)","volume":"7 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"Event-Oriented Map Extraction From Web News Portal : Binary Map Case Study on Diphteria Outbreak and Flood in Jakarta\",\"authors\":\"A. Dewandaru, S. Supriana, Saiful Akbar\",\"doi\":\"10.1109/ICAICTA.2018.8541345\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The abundance of online news texts which contain embedded geographical name references from the internet provide motivation to produce higher level analysis in the form of thematic maps. This can be done by a performing automated geospatial information extraction and retrieval from relevant event-oriented corpora which mainly existed in natural language form. However, unified methods and framework available to address this transformation is still lacking. We propose the incorporation of unsupervised topic modeling and word embedding to help accomplishing the task of aggregating georeferenced data. The topic modeling tool would help suggesting the positive keywords and negative keywords for particular topic while the word embedding helped improve the recall score by extending the semanticaly similar keywords. The method was tested on Indonesian news corpus and achieved comparable result on two offical binary thematic maps case studies based on flood event in Jakarta and diphteria disease in Indonesia.\",\"PeriodicalId\":184882,\"journal\":{\"name\":\"2018 5th International Conference on Advanced Informatics: Concept Theory and Applications (ICAICTA)\",\"volume\":\"7 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2018 5th International Conference on Advanced Informatics: Concept Theory and Applications (ICAICTA)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICAICTA.2018.8541345\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 5th International Conference on Advanced Informatics: Concept Theory and Applications (ICAICTA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICAICTA.2018.8541345","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

摘要

大量的在线新闻文本包含了来自互联网的嵌入式地名参考,这为以专题地图的形式进行更高层次的分析提供了动力。这可以通过从主要以自然语言形式存在的面向事件的相关语料库中自动提取和检索地理空间信息来实现。然而,解决这一转变的统一方法和框架仍然缺乏。我们提出将无监督主题建模和词嵌入相结合来帮助完成地理参考数据的聚合任务。主题建模工具可以帮助提出特定主题的积极关键词和消极关键词,而词嵌入通过扩展语义相似的关键词来提高召回分数。该方法在印度尼西亚新闻语料库上进行了测试,并在基于雅加达洪水事件和印度尼西亚白喉疾病的两个官方二元专题地图案例研究中取得了类似的结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Event-Oriented Map Extraction From Web News Portal : Binary Map Case Study on Diphteria Outbreak and Flood in Jakarta
The abundance of online news texts which contain embedded geographical name references from the internet provide motivation to produce higher level analysis in the form of thematic maps. This can be done by a performing automated geospatial information extraction and retrieval from relevant event-oriented corpora which mainly existed in natural language form. However, unified methods and framework available to address this transformation is still lacking. We propose the incorporation of unsupervised topic modeling and word embedding to help accomplishing the task of aggregating georeferenced data. The topic modeling tool would help suggesting the positive keywords and negative keywords for particular topic while the word embedding helped improve the recall score by extending the semanticaly similar keywords. The method was tested on Indonesian news corpus and achieved comparable result on two offical binary thematic maps case studies based on flood event in Jakarta and diphteria disease in Indonesia.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信