非光滑分数阶区间值多目标优化的最优性条件和对偶关系

N. Hung, N. Tuyen
{"title":"非光滑分数阶区间值多目标优化的最优性条件和对偶关系","authors":"N. Hung, N. Tuyen","doi":"10.23952/asvao.5.2023.1.03","DOIUrl":null,"url":null,"abstract":"This paper deals with Pareto solutions of a nonsmooth fractional interval-valued multiobjective optimization. We first introduce four types of Pareto solutions of the considered problem by considering the lower-upper interval order relation and then apply some advanced tools of variational analysis and generalized differentiation to establish necessary optimality conditions for these solutions. Sufficient conditions for Pareto solutions of such a problem are also provided by means of introducing the concepts of (strictly) generalized convex functions defined in terms of the limiting/Mordukhovich subdifferential of locally Lipschitzian functions. Finally, a Mond--Weir type dual model is formulated, and weak, strong and converse-like duality relations are examined.","PeriodicalId":362333,"journal":{"name":"Applied Set-Valued Analysis and Optimization","volume":"15 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-12-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Optimality conditions and duality relations in nonsmooth fractional interval-valued multiobjective optimization\",\"authors\":\"N. Hung, N. Tuyen\",\"doi\":\"10.23952/asvao.5.2023.1.03\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper deals with Pareto solutions of a nonsmooth fractional interval-valued multiobjective optimization. We first introduce four types of Pareto solutions of the considered problem by considering the lower-upper interval order relation and then apply some advanced tools of variational analysis and generalized differentiation to establish necessary optimality conditions for these solutions. Sufficient conditions for Pareto solutions of such a problem are also provided by means of introducing the concepts of (strictly) generalized convex functions defined in terms of the limiting/Mordukhovich subdifferential of locally Lipschitzian functions. Finally, a Mond--Weir type dual model is formulated, and weak, strong and converse-like duality relations are examined.\",\"PeriodicalId\":362333,\"journal\":{\"name\":\"Applied Set-Valued Analysis and Optimization\",\"volume\":\"15 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-12-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Applied Set-Valued Analysis and Optimization\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.23952/asvao.5.2023.1.03\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Set-Valued Analysis and Optimization","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.23952/asvao.5.2023.1.03","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

研究一类非光滑分数阶区间值多目标优化问题的Pareto解。首先通过考虑上下区间阶关系,引入了所考虑问题的四类Pareto解,然后运用变分分析和广义微分的一些先进工具,建立了这些解的必要最优性条件。通过引入由局部Lipschitzian函数的极限/Mordukhovich子微分定义的(严格)广义凸函数的概念,给出了该问题的Pareto解的充分条件。最后,建立了Mond—Weir型对偶模型,并讨论了弱对偶关系、强对偶关系和类逆对偶关系。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Optimality conditions and duality relations in nonsmooth fractional interval-valued multiobjective optimization
This paper deals with Pareto solutions of a nonsmooth fractional interval-valued multiobjective optimization. We first introduce four types of Pareto solutions of the considered problem by considering the lower-upper interval order relation and then apply some advanced tools of variational analysis and generalized differentiation to establish necessary optimality conditions for these solutions. Sufficient conditions for Pareto solutions of such a problem are also provided by means of introducing the concepts of (strictly) generalized convex functions defined in terms of the limiting/Mordukhovich subdifferential of locally Lipschitzian functions. Finally, a Mond--Weir type dual model is formulated, and weak, strong and converse-like duality relations are examined.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信