基于特征提取的移动应用评定计算模型

Inthuja Gunaratnam, D. Wickramarachchi
{"title":"基于特征提取的移动应用评定计算模型","authors":"Inthuja Gunaratnam, D. Wickramarachchi","doi":"10.1109/icac51239.2020.9357270","DOIUrl":null,"url":null,"abstract":"Google Play Store and App Store allow users to share their opinions and helps to measure users satisfaction level about the app through user comments. However, it's highly time-consuming to process all reviews manually. The usefulness of star ratings is limited for development teams since a rating represents an average of both positive and negative evaluations. Therefore, an automated solution is needed to systematically analyze reviews and other textual forms of data. The main objective of this research is to build a platform that rate apps by feature extraction and sentiment analysis to calculate the functionality index of apps based on metrics obtained by surveying 204 mobile phone users. The 5 topmost metrics obtained from them among the 16 metrics obtained from the literature review are usability, price, and frequency of updates, ad-freeness and battery consuming level. This research focuses on selected apps in music and audio category. To perform app rating indexes calculation of the overall app's reviews; data extraction, data cleaning, POS tagging, feature extraction, feature/feature values pairing, weighted feature rating, overall apps' rating and feature-wise app rating is done on textual data. The accuracy of the created model is measured by the level of satisfaction from users.","PeriodicalId":253040,"journal":{"name":"2020 2nd International Conference on Advancements in Computing (ICAC)","volume":"37 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-12-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Computational Model for Rating Mobile Applications based on Feature Extraction\",\"authors\":\"Inthuja Gunaratnam, D. Wickramarachchi\",\"doi\":\"10.1109/icac51239.2020.9357270\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Google Play Store and App Store allow users to share their opinions and helps to measure users satisfaction level about the app through user comments. However, it's highly time-consuming to process all reviews manually. The usefulness of star ratings is limited for development teams since a rating represents an average of both positive and negative evaluations. Therefore, an automated solution is needed to systematically analyze reviews and other textual forms of data. The main objective of this research is to build a platform that rate apps by feature extraction and sentiment analysis to calculate the functionality index of apps based on metrics obtained by surveying 204 mobile phone users. The 5 topmost metrics obtained from them among the 16 metrics obtained from the literature review are usability, price, and frequency of updates, ad-freeness and battery consuming level. This research focuses on selected apps in music and audio category. To perform app rating indexes calculation of the overall app's reviews; data extraction, data cleaning, POS tagging, feature extraction, feature/feature values pairing, weighted feature rating, overall apps' rating and feature-wise app rating is done on textual data. The accuracy of the created model is measured by the level of satisfaction from users.\",\"PeriodicalId\":253040,\"journal\":{\"name\":\"2020 2nd International Conference on Advancements in Computing (ICAC)\",\"volume\":\"37 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-12-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2020 2nd International Conference on Advancements in Computing (ICAC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/icac51239.2020.9357270\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 2nd International Conference on Advancements in Computing (ICAC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/icac51239.2020.9357270","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

b谷歌Play Store和App Store允许用户分享他们的意见,并通过用户评论来衡量用户对应用的满意度。然而,手动处理所有评论非常耗时。星级评价对开发团队的有用性是有限的,因为评级代表了积极和消极评价的平均值。因此,需要一个自动化的解决方案来系统地分析评论和其他文本形式的数据。本研究的主要目的是建立一个通过特征提取和情感分析对应用进行评分的平台,基于对204个手机用户的调查获得的指标来计算应用的功能指数。从文献综述中获得的16个指标中,最重要的5个指标是可用性、价格、更新频率、无广告性和电池消耗水平。本研究的重点是在音乐和音频类别中选择的应用程序。执行应用评级指数计算的整体应用的评论;数据提取、数据清理、POS标记、特征提取、特征/特征值配对、加权特征评级、整体应用评级和功能应用评级都是基于文本数据完成的。所创建模型的准确性由用户的满意度来衡量。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Computational Model for Rating Mobile Applications based on Feature Extraction
Google Play Store and App Store allow users to share their opinions and helps to measure users satisfaction level about the app through user comments. However, it's highly time-consuming to process all reviews manually. The usefulness of star ratings is limited for development teams since a rating represents an average of both positive and negative evaluations. Therefore, an automated solution is needed to systematically analyze reviews and other textual forms of data. The main objective of this research is to build a platform that rate apps by feature extraction and sentiment analysis to calculate the functionality index of apps based on metrics obtained by surveying 204 mobile phone users. The 5 topmost metrics obtained from them among the 16 metrics obtained from the literature review are usability, price, and frequency of updates, ad-freeness and battery consuming level. This research focuses on selected apps in music and audio category. To perform app rating indexes calculation of the overall app's reviews; data extraction, data cleaning, POS tagging, feature extraction, feature/feature values pairing, weighted feature rating, overall apps' rating and feature-wise app rating is done on textual data. The accuracy of the created model is measured by the level of satisfaction from users.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信