表征网络主题识别垃圾评论

E. Kamaliha, Fatemeh Riahi, Vahed Qazvinian, Jafar Adibi
{"title":"表征网络主题识别垃圾评论","authors":"E. Kamaliha, Fatemeh Riahi, Vahed Qazvinian, Jafar Adibi","doi":"10.1109/ICDMW.2008.72","DOIUrl":null,"url":null,"abstract":"Personal blogs are one of the most interconnected and socially networked type of social media. The capability of placing \"comments'' on blog posts makes the blogosphere rather a complex environment.In this paper, we study the behavior of bloggers who place comments on others' posts and examine if it is possible to detect spam comments.We look at the functionality of different network motif profiles in the comment network, and identify certain subgraphs that associate with spam comments. We illustrate that some of these patterns and their statistical features could be exploited to classify comments and bloggers to spammers and non-spammers. Our preliminary results are encouraging and show reasonable results on rich and dense blog networks.","PeriodicalId":175955,"journal":{"name":"2008 IEEE International Conference on Data Mining Workshops","volume":"14 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2008-12-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"17","resultStr":"{\"title\":\"Characterizing Network Motifs to Identify Spam Comments\",\"authors\":\"E. Kamaliha, Fatemeh Riahi, Vahed Qazvinian, Jafar Adibi\",\"doi\":\"10.1109/ICDMW.2008.72\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Personal blogs are one of the most interconnected and socially networked type of social media. The capability of placing \\\"comments'' on blog posts makes the blogosphere rather a complex environment.In this paper, we study the behavior of bloggers who place comments on others' posts and examine if it is possible to detect spam comments.We look at the functionality of different network motif profiles in the comment network, and identify certain subgraphs that associate with spam comments. We illustrate that some of these patterns and their statistical features could be exploited to classify comments and bloggers to spammers and non-spammers. Our preliminary results are encouraging and show reasonable results on rich and dense blog networks.\",\"PeriodicalId\":175955,\"journal\":{\"name\":\"2008 IEEE International Conference on Data Mining Workshops\",\"volume\":\"14 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2008-12-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"17\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2008 IEEE International Conference on Data Mining Workshops\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICDMW.2008.72\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2008 IEEE International Conference on Data Mining Workshops","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICDMW.2008.72","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 17

摘要

个人博客是一种相互联系最紧密的社交网络类型的社交媒体。在博客文章上放置“评论”的功能使博客圈成为一个相当复杂的环境。在本文中,我们研究了博客作者在别人的帖子上发表评论的行为,并检验了是否有可能检测到垃圾评论。我们查看评论网络中不同网络主题配置文件的功能,并识别与垃圾评论相关的某些子图。我们说明了其中一些模式及其统计特征可以用于将评论和博客分类为垃圾邮件发送者和非垃圾邮件发送者。我们的初步结果是令人鼓舞的,并且在丰富和密集的博客网络上显示出合理的结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Characterizing Network Motifs to Identify Spam Comments
Personal blogs are one of the most interconnected and socially networked type of social media. The capability of placing "comments'' on blog posts makes the blogosphere rather a complex environment.In this paper, we study the behavior of bloggers who place comments on others' posts and examine if it is possible to detect spam comments.We look at the functionality of different network motif profiles in the comment network, and identify certain subgraphs that associate with spam comments. We illustrate that some of these patterns and their statistical features could be exploited to classify comments and bloggers to spammers and non-spammers. Our preliminary results are encouraging and show reasonable results on rich and dense blog networks.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信