使用迁移学习架构的自动肠道内容分类

Palak Handa, Nidhi Goel, S. Indu
{"title":"使用迁移学习架构的自动肠道内容分类","authors":"Palak Handa, Nidhi Goel, S. Indu","doi":"10.1109/CONECCT55679.2022.9865727","DOIUrl":null,"url":null,"abstract":"Investigation of anomalies in capsule endoscopy (CE) is affected by an impairment of the mucosal frames with bubbles, debris, intestinal fluid, foreign objects, and chyme (food) etc., which can lead to a higher false-positive rate during manual and computer-aided analysis. An automatic intestinal content classification can help in checking the reliability and efficacy of computer-aided anomaly detection for CE frames. This paper presents three transfer learning (TL) architectures namely VGG16, InceptionResNetV2, and ResNet50V2 for automatic intestinal content classification using 1,67,486 and 140 CE patches and frames. A comparative analysis of the TL architectures has been done through various evaluation metrics like accuracy, precision, recall, specificity, loss, area-under-curve (AUC) and F1-score, test set evaluation, and feature maps. ResNet50V2 performed best among the three architectures and achieved an accuracy, precision, recall, specificity, and F1-score up-to 94.15%, 94.73%, 93.17%, 95.08%, and 93.95% respectively for CE frames. All three architectures efficiently classified ‘dirty’ test set CE frames and outperformed in comparison to the existing state-of-the-art works.","PeriodicalId":380005,"journal":{"name":"2022 IEEE International Conference on Electronics, Computing and Communication Technologies (CONECCT)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-07-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Automatic intestinal content classification using transfer learning architectures\",\"authors\":\"Palak Handa, Nidhi Goel, S. Indu\",\"doi\":\"10.1109/CONECCT55679.2022.9865727\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Investigation of anomalies in capsule endoscopy (CE) is affected by an impairment of the mucosal frames with bubbles, debris, intestinal fluid, foreign objects, and chyme (food) etc., which can lead to a higher false-positive rate during manual and computer-aided analysis. An automatic intestinal content classification can help in checking the reliability and efficacy of computer-aided anomaly detection for CE frames. This paper presents three transfer learning (TL) architectures namely VGG16, InceptionResNetV2, and ResNet50V2 for automatic intestinal content classification using 1,67,486 and 140 CE patches and frames. A comparative analysis of the TL architectures has been done through various evaluation metrics like accuracy, precision, recall, specificity, loss, area-under-curve (AUC) and F1-score, test set evaluation, and feature maps. ResNet50V2 performed best among the three architectures and achieved an accuracy, precision, recall, specificity, and F1-score up-to 94.15%, 94.73%, 93.17%, 95.08%, and 93.95% respectively for CE frames. All three architectures efficiently classified ‘dirty’ test set CE frames and outperformed in comparison to the existing state-of-the-art works.\",\"PeriodicalId\":380005,\"journal\":{\"name\":\"2022 IEEE International Conference on Electronics, Computing and Communication Technologies (CONECCT)\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-07-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 IEEE International Conference on Electronics, Computing and Communication Technologies (CONECCT)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CONECCT55679.2022.9865727\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE International Conference on Electronics, Computing and Communication Technologies (CONECCT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CONECCT55679.2022.9865727","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

胶囊内窥镜(CE)异常的调查受粘膜框架损伤的影响,包括气泡、碎片、肠液、异物和食糜(食物)等,这在人工和计算机辅助分析时可能导致更高的假阳性率。肠道内容物自动分类有助于检查计算机辅助异常检测CE框架的可靠性和有效性。本文提出了三种迁移学习(TL)架构,即VGG16, InceptionResNetV2和ResNet50V2,用于使用1,67,486和140 CE补丁和框架对肠道内容物进行自动分类。通过各种评估指标,如准确性、精密度、召回率、特异性、损失、曲线下面积(AUC)和f1分数、测试集评估和特征图,对TL体系结构进行了比较分析。ResNet50V2在三种架构中表现最好,对CE帧的准确率、精密度、召回率、特异性和f1评分分别达到94.15%、94.73%、93.17%、95.08%和93.95%。所有三种架构都有效地分类了“脏”测试集CE框架,并且与现有的最先进的作品相比表现出色。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Automatic intestinal content classification using transfer learning architectures
Investigation of anomalies in capsule endoscopy (CE) is affected by an impairment of the mucosal frames with bubbles, debris, intestinal fluid, foreign objects, and chyme (food) etc., which can lead to a higher false-positive rate during manual and computer-aided analysis. An automatic intestinal content classification can help in checking the reliability and efficacy of computer-aided anomaly detection for CE frames. This paper presents three transfer learning (TL) architectures namely VGG16, InceptionResNetV2, and ResNet50V2 for automatic intestinal content classification using 1,67,486 and 140 CE patches and frames. A comparative analysis of the TL architectures has been done through various evaluation metrics like accuracy, precision, recall, specificity, loss, area-under-curve (AUC) and F1-score, test set evaluation, and feature maps. ResNet50V2 performed best among the three architectures and achieved an accuracy, precision, recall, specificity, and F1-score up-to 94.15%, 94.73%, 93.17%, 95.08%, and 93.95% respectively for CE frames. All three architectures efficiently classified ‘dirty’ test set CE frames and outperformed in comparison to the existing state-of-the-art works.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信