U. Feige, S. Goldwasser, L. Lovász, S. Safra, M. Szegedy
{"title":"近似团几乎是np完全的","authors":"U. Feige, S. Goldwasser, L. Lovász, S. Safra, M. Szegedy","doi":"10.1109/SFCS.1991.185341","DOIUrl":null,"url":null,"abstract":"The computational complexity of approximating omega (G), the size of the largest clique in a graph G, within a given factor is considered. It is shown that if certain approximation procedures exist, then EXPTIME=NEXPTIME and NP=P.<<ETX>>","PeriodicalId":320781,"journal":{"name":"[1991] Proceedings 32nd Annual Symposium of Foundations of Computer Science","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1991-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"465","resultStr":"{\"title\":\"Approximating clique is almost NP-complete\",\"authors\":\"U. Feige, S. Goldwasser, L. Lovász, S. Safra, M. Szegedy\",\"doi\":\"10.1109/SFCS.1991.185341\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The computational complexity of approximating omega (G), the size of the largest clique in a graph G, within a given factor is considered. It is shown that if certain approximation procedures exist, then EXPTIME=NEXPTIME and NP=P.<<ETX>>\",\"PeriodicalId\":320781,\"journal\":{\"name\":\"[1991] Proceedings 32nd Annual Symposium of Foundations of Computer Science\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1991-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"465\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"[1991] Proceedings 32nd Annual Symposium of Foundations of Computer Science\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SFCS.1991.185341\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"[1991] Proceedings 32nd Annual Symposium of Foundations of Computer Science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SFCS.1991.185341","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
The computational complexity of approximating omega (G), the size of the largest clique in a graph G, within a given factor is considered. It is shown that if certain approximation procedures exist, then EXPTIME=NEXPTIME and NP=P.<>