电子游戏控制器演化过程中两种s型激活函数的比较

Tse Guan Tan, J. Teo, P. Anthony
{"title":"电子游戏控制器演化过程中两种s型激活函数的比较","authors":"Tse Guan Tan, J. Teo, P. Anthony","doi":"10.1109/STUDENT.2011.6089331","DOIUrl":null,"url":null,"abstract":"This paper presents an empirical comparison of two sigmoidal-type activation functions in evolutionary artificial neural network models. They are the log-sigmoid and hyperbolic tangent sigmoid activation functions which were investigated in order for evolving neural network controllers to play a classic video game. A Hill-Climbing Neural Network (HillClimbNet) was developed using the hill-climbing method together with a feedforward neural network to automatically create an intelligent controller that can play the screen-capture of Ms. Pac-man arcade game. The experimental results showed that that the HillClimbNet with log-sigmoid outperforms the HillClimbNet with hyperbolic tangent sigmoid when used in the hidden and output layers of the network when the agent plays the game.","PeriodicalId":247351,"journal":{"name":"2011 IEEE Conference on Sustainable Utilization and Development in Engineering and Technology (STUDENT)","volume":"19 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"A comparison of two sigmoidal-type activation functions in video game controller evolution\",\"authors\":\"Tse Guan Tan, J. Teo, P. Anthony\",\"doi\":\"10.1109/STUDENT.2011.6089331\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper presents an empirical comparison of two sigmoidal-type activation functions in evolutionary artificial neural network models. They are the log-sigmoid and hyperbolic tangent sigmoid activation functions which were investigated in order for evolving neural network controllers to play a classic video game. A Hill-Climbing Neural Network (HillClimbNet) was developed using the hill-climbing method together with a feedforward neural network to automatically create an intelligent controller that can play the screen-capture of Ms. Pac-man arcade game. The experimental results showed that that the HillClimbNet with log-sigmoid outperforms the HillClimbNet with hyperbolic tangent sigmoid when used in the hidden and output layers of the network when the agent plays the game.\",\"PeriodicalId\":247351,\"journal\":{\"name\":\"2011 IEEE Conference on Sustainable Utilization and Development in Engineering and Technology (STUDENT)\",\"volume\":\"19 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2011-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2011 IEEE Conference on Sustainable Utilization and Development in Engineering and Technology (STUDENT)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/STUDENT.2011.6089331\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2011 IEEE Conference on Sustainable Utilization and Development in Engineering and Technology (STUDENT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/STUDENT.2011.6089331","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

本文对进化人工神经网络模型中两种s型激活函数进行了实证比较。它们分别是对数sigmoid和双曲正切sigmoid激活函数,它们是为了进化神经网络控制器玩经典视频游戏而研究的。利用爬坡方法与前馈神经网络相结合,开发了一个爬坡神经网络(HillClimbNet),自动生成一个可以玩《吃豆女士》街机游戏截图的智能控制器。实验结果表明,当智能体进行游戏时,在网络的隐藏层和输出层中使用log-sigmoid的HillClimbNet优于双曲正切sigmoid的HillClimbNet。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A comparison of two sigmoidal-type activation functions in video game controller evolution
This paper presents an empirical comparison of two sigmoidal-type activation functions in evolutionary artificial neural network models. They are the log-sigmoid and hyperbolic tangent sigmoid activation functions which were investigated in order for evolving neural network controllers to play a classic video game. A Hill-Climbing Neural Network (HillClimbNet) was developed using the hill-climbing method together with a feedforward neural network to automatically create an intelligent controller that can play the screen-capture of Ms. Pac-man arcade game. The experimental results showed that that the HillClimbNet with log-sigmoid outperforms the HillClimbNet with hyperbolic tangent sigmoid when used in the hidden and output layers of the network when the agent plays the game.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信