SVDD:自动信用评级预测的建议

Claude Gangolf, Robert Dochow, G. Schmidt, T. Tamisier
{"title":"SVDD:自动信用评级预测的建议","authors":"Claude Gangolf, Robert Dochow, G. Schmidt, T. Tamisier","doi":"10.1109/CoDIT.2014.6996866","DOIUrl":null,"url":null,"abstract":"Credit rating prediction using clustering algorithms has become more and more important in the financial literature. Expanding the ideas of [4] and [5], we propose an approach to generate models for automated credit rating prediction based on support vector domain description (SVDD) and linear regression (LR). The models include the prediction for sovereign and corporate bonds. Another advantage is, the prediction models contain as many groups as rating grades exist, given by rating agencies like S&P, Fitch and Moody's. Our approach is formulated as a step-by-step procedure and all steps are illustrated by an example with artificial data. A numerical example with real data demonstrates the practical usability of our approach.","PeriodicalId":161703,"journal":{"name":"2014 International Conference on Control, Decision and Information Technologies (CoDIT)","volume":"43 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-12-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":"{\"title\":\"SVDD: A proposal for automated credit rating prediction\",\"authors\":\"Claude Gangolf, Robert Dochow, G. Schmidt, T. Tamisier\",\"doi\":\"10.1109/CoDIT.2014.6996866\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Credit rating prediction using clustering algorithms has become more and more important in the financial literature. Expanding the ideas of [4] and [5], we propose an approach to generate models for automated credit rating prediction based on support vector domain description (SVDD) and linear regression (LR). The models include the prediction for sovereign and corporate bonds. Another advantage is, the prediction models contain as many groups as rating grades exist, given by rating agencies like S&P, Fitch and Moody's. Our approach is formulated as a step-by-step procedure and all steps are illustrated by an example with artificial data. A numerical example with real data demonstrates the practical usability of our approach.\",\"PeriodicalId\":161703,\"journal\":{\"name\":\"2014 International Conference on Control, Decision and Information Technologies (CoDIT)\",\"volume\":\"43 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-12-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"8\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2014 International Conference on Control, Decision and Information Technologies (CoDIT)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CoDIT.2014.6996866\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 International Conference on Control, Decision and Information Technologies (CoDIT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CoDIT.2014.6996866","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 8

摘要

在金融文献中,利用聚类算法进行信用评级预测已变得越来越重要。扩展[4]和[5]的思想,提出了一种基于支持向量域描述(SVDD)和线性回归(LR)的自动信用评级预测模型生成方法。这些模型包括对主权债券和公司债券的预测。另一个优点是,预测模型包含的组数与标普(S&P)、惠誉(Fitch)和穆迪(Moody’s)等评级机构给出的评级等级相当。我们的方法是一个循序渐进的过程,所有步骤都用一个人工数据的例子来说明。一个具有实际数据的数值例子证明了我们的方法的实用性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
SVDD: A proposal for automated credit rating prediction
Credit rating prediction using clustering algorithms has become more and more important in the financial literature. Expanding the ideas of [4] and [5], we propose an approach to generate models for automated credit rating prediction based on support vector domain description (SVDD) and linear regression (LR). The models include the prediction for sovereign and corporate bonds. Another advantage is, the prediction models contain as many groups as rating grades exist, given by rating agencies like S&P, Fitch and Moody's. Our approach is formulated as a step-by-step procedure and all steps are illustrated by an example with artificial data. A numerical example with real data demonstrates the practical usability of our approach.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信