基于新适应度的粒子群算法聚类数据

Ehsan Toreini, M. Mehrnejad
{"title":"基于新适应度的粒子群算法聚类数据","authors":"Ehsan Toreini, M. Mehrnejad","doi":"10.1109/DMO.2011.5976539","DOIUrl":null,"url":null,"abstract":"Data clustering has been studied for a long time and every day trends are proposed for better outcomes in this field. One of the latest trends in this area is the application of Particle Swarm Optimization (PSO) in clustering which has good potential for improvements. In this paper, we consider a new fitness function for our PSO-based clustering method and compared it with the previous ones. Experimental results show that our method has better outcomes than the other ones.","PeriodicalId":436393,"journal":{"name":"2011 3rd Conference on Data Mining and Optimization (DMO)","volume":"35 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-06-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"Clustering data with Particle Swarm Optimization using a new fitness\",\"authors\":\"Ehsan Toreini, M. Mehrnejad\",\"doi\":\"10.1109/DMO.2011.5976539\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Data clustering has been studied for a long time and every day trends are proposed for better outcomes in this field. One of the latest trends in this area is the application of Particle Swarm Optimization (PSO) in clustering which has good potential for improvements. In this paper, we consider a new fitness function for our PSO-based clustering method and compared it with the previous ones. Experimental results show that our method has better outcomes than the other ones.\",\"PeriodicalId\":436393,\"journal\":{\"name\":\"2011 3rd Conference on Data Mining and Optimization (DMO)\",\"volume\":\"35 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2011-06-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2011 3rd Conference on Data Mining and Optimization (DMO)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/DMO.2011.5976539\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2011 3rd Conference on Data Mining and Optimization (DMO)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/DMO.2011.5976539","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

摘要

数据聚类已经研究了很长时间,每天的趋势都被提出,以便在这一领域取得更好的结果。粒子群算法(PSO)在聚类中的应用是该领域的最新发展趋势之一,具有很好的改进潜力。在本文中,我们考虑了一个新的适应度函数用于我们的基于pso的聚类方法,并与之前的方法进行了比较。实验结果表明,该方法具有较好的效果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Clustering data with Particle Swarm Optimization using a new fitness
Data clustering has been studied for a long time and every day trends are proposed for better outcomes in this field. One of the latest trends in this area is the application of Particle Swarm Optimization (PSO) in clustering which has good potential for improvements. In this paper, we consider a new fitness function for our PSO-based clustering method and compared it with the previous ones. Experimental results show that our method has better outcomes than the other ones.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信