Sean W. Smith, R. Koppel, J. Blythe, Vijay H. Kothari
{"title":"异形:计算机安全规避的符号学模型(海报摘要)","authors":"Sean W. Smith, R. Koppel, J. Blythe, Vijay H. Kothari","doi":"10.1145/2746194.2746219","DOIUrl":null,"url":null,"abstract":"In real world domains, from healthcare to power to finance, we deploy computer systems intended to streamline and improve the activities of human agents in the corresponding non-cyber worlds. However, talking to actual users (instead of just computer security experts) reveals endemic circumvention of the computer-embedded rules. Good-intentioned users, trying to get their jobs done, systematically work around security and other controls embedded in their IT systems. This poster reports on our work compiling a large corpus of such incidents and developing a model based on semiotic triads to examine security circumvention. This model suggests that mismorphisms---mappings that fail to preserve structure---lie at the heart of circumvention scenarios; differential perceptions and needs explain users' actions. We support this claim with empirical data from the corpus.","PeriodicalId":134331,"journal":{"name":"Proceedings of the 2015 Symposium and Bootcamp on the Science of Security","volume":"47 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-04-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"10","resultStr":"{\"title\":\"Mismorphism: a semiotic model of computer security circumvention (poster abstract)\",\"authors\":\"Sean W. Smith, R. Koppel, J. Blythe, Vijay H. Kothari\",\"doi\":\"10.1145/2746194.2746219\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In real world domains, from healthcare to power to finance, we deploy computer systems intended to streamline and improve the activities of human agents in the corresponding non-cyber worlds. However, talking to actual users (instead of just computer security experts) reveals endemic circumvention of the computer-embedded rules. Good-intentioned users, trying to get their jobs done, systematically work around security and other controls embedded in their IT systems. This poster reports on our work compiling a large corpus of such incidents and developing a model based on semiotic triads to examine security circumvention. This model suggests that mismorphisms---mappings that fail to preserve structure---lie at the heart of circumvention scenarios; differential perceptions and needs explain users' actions. We support this claim with empirical data from the corpus.\",\"PeriodicalId\":134331,\"journal\":{\"name\":\"Proceedings of the 2015 Symposium and Bootcamp on the Science of Security\",\"volume\":\"47 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-04-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"10\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 2015 Symposium and Bootcamp on the Science of Security\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/2746194.2746219\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2015 Symposium and Bootcamp on the Science of Security","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2746194.2746219","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Mismorphism: a semiotic model of computer security circumvention (poster abstract)
In real world domains, from healthcare to power to finance, we deploy computer systems intended to streamline and improve the activities of human agents in the corresponding non-cyber worlds. However, talking to actual users (instead of just computer security experts) reveals endemic circumvention of the computer-embedded rules. Good-intentioned users, trying to get their jobs done, systematically work around security and other controls embedded in their IT systems. This poster reports on our work compiling a large corpus of such incidents and developing a model based on semiotic triads to examine security circumvention. This model suggests that mismorphisms---mappings that fail to preserve structure---lie at the heart of circumvention scenarios; differential perceptions and needs explain users' actions. We support this claim with empirical data from the corpus.