支持向量机与预训练语言模型在文本分类任务中的比较

Yasmen Wahba, N. Madhavji, John Steinbacher
{"title":"支持向量机与预训练语言模型在文本分类任务中的比较","authors":"Yasmen Wahba, N. Madhavji, John Steinbacher","doi":"10.48550/arXiv.2211.02563","DOIUrl":null,"url":null,"abstract":"The emergence of pre-trained language models (PLMs) has shown great success in many Natural Language Processing (NLP) tasks including text classification. Due to the minimal to no feature engineering required when using these models, PLMs are becoming the de facto choice for any NLP task. However, for domain-specific corpora (e.g., financial, legal, and industrial), fine-tuning a pre-trained model for a specific task has shown to provide a performance improvement. In this paper, we compare the performance of four different PLMs on three public domain-free datasets and a real-world dataset containing domain-specific words, against a simple SVM linear classifier with TFIDF vectorized text. The experimental results on the four datasets show that using PLMs, even fine-tuned, do not provide significant gain over the linear SVM classifier. Hence, we recommend that for text classification tasks, traditional SVM along with careful feature engineering can pro-vide a cheaper and superior performance than PLMs.","PeriodicalId":432112,"journal":{"name":"International Conference on Machine Learning, Optimization, and Data Science","volume":"29 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-11-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":"{\"title\":\"A Comparison of SVM against Pre-trained Language Models (PLMs) for Text Classification Tasks\",\"authors\":\"Yasmen Wahba, N. Madhavji, John Steinbacher\",\"doi\":\"10.48550/arXiv.2211.02563\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The emergence of pre-trained language models (PLMs) has shown great success in many Natural Language Processing (NLP) tasks including text classification. Due to the minimal to no feature engineering required when using these models, PLMs are becoming the de facto choice for any NLP task. However, for domain-specific corpora (e.g., financial, legal, and industrial), fine-tuning a pre-trained model for a specific task has shown to provide a performance improvement. In this paper, we compare the performance of four different PLMs on three public domain-free datasets and a real-world dataset containing domain-specific words, against a simple SVM linear classifier with TFIDF vectorized text. The experimental results on the four datasets show that using PLMs, even fine-tuned, do not provide significant gain over the linear SVM classifier. Hence, we recommend that for text classification tasks, traditional SVM along with careful feature engineering can pro-vide a cheaper and superior performance than PLMs.\",\"PeriodicalId\":432112,\"journal\":{\"name\":\"International Conference on Machine Learning, Optimization, and Data Science\",\"volume\":\"29 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-11-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Conference on Machine Learning, Optimization, and Data Science\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.48550/arXiv.2211.02563\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Conference on Machine Learning, Optimization, and Data Science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.48550/arXiv.2211.02563","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

摘要

预训练语言模型(PLMs)的出现在包括文本分类在内的许多自然语言处理(NLP)任务中取得了巨大的成功。由于在使用这些模型时几乎不需要特征工程,因此plm正在成为任何NLP任务的事实上的选择。然而,对于特定领域的语料库(例如,金融、法律和工业),为特定任务微调预训练的模型可以提供性能改进。在本文中,我们比较了四种不同的PLMs在三个公共无领域数据集和一个包含领域特定词的真实数据集上的性能,并与具有TFIDF矢量化文本的简单SVM线性分类器进行了比较。在四个数据集上的实验结果表明,使用PLMs,即使经过微调,也不会提供比线性SVM分类器显著的增益。因此,我们建议,对于文本分类任务,传统的SVM加上仔细的特征工程可以提供比PLMs更便宜和更好的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A Comparison of SVM against Pre-trained Language Models (PLMs) for Text Classification Tasks
The emergence of pre-trained language models (PLMs) has shown great success in many Natural Language Processing (NLP) tasks including text classification. Due to the minimal to no feature engineering required when using these models, PLMs are becoming the de facto choice for any NLP task. However, for domain-specific corpora (e.g., financial, legal, and industrial), fine-tuning a pre-trained model for a specific task has shown to provide a performance improvement. In this paper, we compare the performance of four different PLMs on three public domain-free datasets and a real-world dataset containing domain-specific words, against a simple SVM linear classifier with TFIDF vectorized text. The experimental results on the four datasets show that using PLMs, even fine-tuned, do not provide significant gain over the linear SVM classifier. Hence, we recommend that for text classification tasks, traditional SVM along with careful feature engineering can pro-vide a cheaper and superior performance than PLMs.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信