{"title":"鲁棒leader-obstacle编队控制","authors":"M. Soorki, H. Talebi, S. Nikravesh","doi":"10.1109/CCA.2011.6044510","DOIUrl":null,"url":null,"abstract":"This paper presents a new strategy for obstacle avoidance in mobile robots leader-follower formation. The key feature of the algorithm is that the system is robust against absolute acceleration of both leader and obstacle. On the other hand the angular velocity constraint of leader and obstacle is eliminated in the proposed leader-obstacle formation. The formation controller is composed of a feedback linearization part and a sliding mode compensator. Similar structure is used for both leader-follower and leader-obstacle formation. The proposed controller generates the commanded acceleration for the follower robot and makes the formation control system robust against the unmeasured acceleration of the leader robot and obstacle. Simulation results are presented to show the validity of the proposed methodology.","PeriodicalId":208713,"journal":{"name":"2011 IEEE International Conference on Control Applications (CCA)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-10-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"A robust leader-obstacle formation control\",\"authors\":\"M. Soorki, H. Talebi, S. Nikravesh\",\"doi\":\"10.1109/CCA.2011.6044510\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper presents a new strategy for obstacle avoidance in mobile robots leader-follower formation. The key feature of the algorithm is that the system is robust against absolute acceleration of both leader and obstacle. On the other hand the angular velocity constraint of leader and obstacle is eliminated in the proposed leader-obstacle formation. The formation controller is composed of a feedback linearization part and a sliding mode compensator. Similar structure is used for both leader-follower and leader-obstacle formation. The proposed controller generates the commanded acceleration for the follower robot and makes the formation control system robust against the unmeasured acceleration of the leader robot and obstacle. Simulation results are presented to show the validity of the proposed methodology.\",\"PeriodicalId\":208713,\"journal\":{\"name\":\"2011 IEEE International Conference on Control Applications (CCA)\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2011-10-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2011 IEEE International Conference on Control Applications (CCA)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CCA.2011.6044510\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2011 IEEE International Conference on Control Applications (CCA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CCA.2011.6044510","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
This paper presents a new strategy for obstacle avoidance in mobile robots leader-follower formation. The key feature of the algorithm is that the system is robust against absolute acceleration of both leader and obstacle. On the other hand the angular velocity constraint of leader and obstacle is eliminated in the proposed leader-obstacle formation. The formation controller is composed of a feedback linearization part and a sliding mode compensator. Similar structure is used for both leader-follower and leader-obstacle formation. The proposed controller generates the commanded acceleration for the follower robot and makes the formation control system robust against the unmeasured acceleration of the leader robot and obstacle. Simulation results are presented to show the validity of the proposed methodology.