基于遗传算法的GaN hemt分布式小信号模型提取方法

Anwar Jarnda
{"title":"基于遗传算法的GaN hemt分布式小信号模型提取方法","authors":"Anwar Jarnda","doi":"10.1109/SMELEC.2010.5549476","DOIUrl":null,"url":null,"abstract":"In this paper, an improved small-signal model parameter extraction method, using genetic algorithm (GA), is presented and implemented for GaN HEMT. The GA optimization is used to generate a high quality reliable starting values for the elements of distributed model. This value are then refined using local optimization technique to find optimal value for each model element. The developed extraction method is validated by simulating S-parameter measurements of a 8x125-µm gate width GaN HEMT over a wide bias range.","PeriodicalId":308501,"journal":{"name":"2010 IEEE International Conference on Semiconductor Electronics (ICSE2010)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-06-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":"{\"title\":\"Genetic algorithm based extraction method for distributed small-signal model of GaN HEMTs\",\"authors\":\"Anwar Jarnda\",\"doi\":\"10.1109/SMELEC.2010.5549476\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, an improved small-signal model parameter extraction method, using genetic algorithm (GA), is presented and implemented for GaN HEMT. The GA optimization is used to generate a high quality reliable starting values for the elements of distributed model. This value are then refined using local optimization technique to find optimal value for each model element. The developed extraction method is validated by simulating S-parameter measurements of a 8x125-µm gate width GaN HEMT over a wide bias range.\",\"PeriodicalId\":308501,\"journal\":{\"name\":\"2010 IEEE International Conference on Semiconductor Electronics (ICSE2010)\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2010-06-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"9\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2010 IEEE International Conference on Semiconductor Electronics (ICSE2010)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SMELEC.2010.5549476\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 IEEE International Conference on Semiconductor Electronics (ICSE2010)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SMELEC.2010.5549476","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 9

摘要

本文提出并实现了一种基于遗传算法的GaN HEMT小信号模型参数提取方法。采用遗传算法优化,为分布式模型元素生成高质量可靠的起始值。然后使用局部优化技术对该值进行细化,以找到每个模型元素的最优值。通过模拟8x125µm栅极宽度GaN HEMT在宽偏置范围内的s参数测量,验证了所开发的提取方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Genetic algorithm based extraction method for distributed small-signal model of GaN HEMTs
In this paper, an improved small-signal model parameter extraction method, using genetic algorithm (GA), is presented and implemented for GaN HEMT. The GA optimization is used to generate a high quality reliable starting values for the elements of distributed model. This value are then refined using local optimization technique to find optimal value for each model element. The developed extraction method is validated by simulating S-parameter measurements of a 8x125-µm gate width GaN HEMT over a wide bias range.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信