{"title":"基于遗传算法的GaN hemt分布式小信号模型提取方法","authors":"Anwar Jarnda","doi":"10.1109/SMELEC.2010.5549476","DOIUrl":null,"url":null,"abstract":"In this paper, an improved small-signal model parameter extraction method, using genetic algorithm (GA), is presented and implemented for GaN HEMT. The GA optimization is used to generate a high quality reliable starting values for the elements of distributed model. This value are then refined using local optimization technique to find optimal value for each model element. The developed extraction method is validated by simulating S-parameter measurements of a 8x125-µm gate width GaN HEMT over a wide bias range.","PeriodicalId":308501,"journal":{"name":"2010 IEEE International Conference on Semiconductor Electronics (ICSE2010)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-06-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":"{\"title\":\"Genetic algorithm based extraction method for distributed small-signal model of GaN HEMTs\",\"authors\":\"Anwar Jarnda\",\"doi\":\"10.1109/SMELEC.2010.5549476\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, an improved small-signal model parameter extraction method, using genetic algorithm (GA), is presented and implemented for GaN HEMT. The GA optimization is used to generate a high quality reliable starting values for the elements of distributed model. This value are then refined using local optimization technique to find optimal value for each model element. The developed extraction method is validated by simulating S-parameter measurements of a 8x125-µm gate width GaN HEMT over a wide bias range.\",\"PeriodicalId\":308501,\"journal\":{\"name\":\"2010 IEEE International Conference on Semiconductor Electronics (ICSE2010)\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2010-06-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"9\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2010 IEEE International Conference on Semiconductor Electronics (ICSE2010)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SMELEC.2010.5549476\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 IEEE International Conference on Semiconductor Electronics (ICSE2010)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SMELEC.2010.5549476","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Genetic algorithm based extraction method for distributed small-signal model of GaN HEMTs
In this paper, an improved small-signal model parameter extraction method, using genetic algorithm (GA), is presented and implemented for GaN HEMT. The GA optimization is used to generate a high quality reliable starting values for the elements of distributed model. This value are then refined using local optimization technique to find optimal value for each model element. The developed extraction method is validated by simulating S-parameter measurements of a 8x125-µm gate width GaN HEMT over a wide bias range.