验证深度神经网络的算法

Changliu Liu, Tomer Arnon, Christopher Lazarus, Clark W. Barrett, Mykel J. Kochenderfer
{"title":"验证深度神经网络的算法","authors":"Changliu Liu, Tomer Arnon, Christopher Lazarus, Clark W. Barrett, Mykel J. Kochenderfer","doi":"10.1561/2400000035","DOIUrl":null,"url":null,"abstract":"Deep neural networks are widely used for nonlinear function approximation with applications ranging from computer vision to control. Although these networks involve the composition of simple arithmetic operations, it can be very challenging to verify whether a particular network satisfies certain input-output properties. This article surveys methods that have emerged recently for soundly verifying such properties. These methods borrow insights from reachability analysis, optimization, and search. We discuss fundamental differences and connections between existing algorithms. In addition, we provide pedagogical implementations of existing methods and compare them on a set of benchmark problems.","PeriodicalId":329329,"journal":{"name":"Found. Trends Optim.","volume":"4 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-03-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"288","resultStr":"{\"title\":\"Algorithms for Verifying Deep Neural Networks\",\"authors\":\"Changliu Liu, Tomer Arnon, Christopher Lazarus, Clark W. Barrett, Mykel J. Kochenderfer\",\"doi\":\"10.1561/2400000035\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Deep neural networks are widely used for nonlinear function approximation with applications ranging from computer vision to control. Although these networks involve the composition of simple arithmetic operations, it can be very challenging to verify whether a particular network satisfies certain input-output properties. This article surveys methods that have emerged recently for soundly verifying such properties. These methods borrow insights from reachability analysis, optimization, and search. We discuss fundamental differences and connections between existing algorithms. In addition, we provide pedagogical implementations of existing methods and compare them on a set of benchmark problems.\",\"PeriodicalId\":329329,\"journal\":{\"name\":\"Found. Trends Optim.\",\"volume\":\"4 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-03-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"288\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Found. Trends Optim.\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1561/2400000035\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Found. Trends Optim.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1561/2400000035","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 288

摘要

深度神经网络广泛用于非线性函数逼近,应用范围从计算机视觉到控制。尽管这些网络涉及简单算术运算的组合,但验证特定网络是否满足某些输入输出属性可能非常具有挑战性。本文调查了最近出现的用于可靠验证这些属性的方法。这些方法借鉴了可达性分析、优化和搜索的见解。我们讨论了现有算法之间的基本区别和联系。此外,我们提供了现有方法的教学实现,并在一组基准问题上对它们进行比较。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Algorithms for Verifying Deep Neural Networks
Deep neural networks are widely used for nonlinear function approximation with applications ranging from computer vision to control. Although these networks involve the composition of simple arithmetic operations, it can be very challenging to verify whether a particular network satisfies certain input-output properties. This article surveys methods that have emerged recently for soundly verifying such properties. These methods borrow insights from reachability analysis, optimization, and search. We discuss fundamental differences and connections between existing algorithms. In addition, we provide pedagogical implementations of existing methods and compare them on a set of benchmark problems.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信