一种新的基于广义模型的预测控制算法

S. Tzafestas, G. Vagelatos, G. Capsiotis
{"title":"一种新的基于广义模型的预测控制算法","authors":"S. Tzafestas, G. Vagelatos, G. Capsiotis","doi":"10.1109/CDC.1991.261473","DOIUrl":null,"url":null,"abstract":"A unified generalized model-based predictive control (GMBPC) technique is presented. This technique combines in an efficient way the key properties of several previous MBPC-like algorithms. The multiple-input-multiple-output (MIMO) state-space is employed, and state and control constraints are included in the system formulation. For better accuracy a second-order model is employed for each output variable, while a first-order model is always used in the available algorithms. For the unconstrained case a simple explicit control law is obtained. A particular feature of the proposed technique is that the predictive functional control principle is used to reduce the computational complexity of the resulting GMBP controller. Extensive simulation examples in industrial and managerial system models support the effectiveness of the present GMBP controller in terms of meeting the desired specifications and having reduced computational requirements.<<ETX>>","PeriodicalId":344553,"journal":{"name":"[1991] Proceedings of the 30th IEEE Conference on Decision and Control","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1991-12-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"A new generalized model-based predictive control algorithm\",\"authors\":\"S. Tzafestas, G. Vagelatos, G. Capsiotis\",\"doi\":\"10.1109/CDC.1991.261473\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A unified generalized model-based predictive control (GMBPC) technique is presented. This technique combines in an efficient way the key properties of several previous MBPC-like algorithms. The multiple-input-multiple-output (MIMO) state-space is employed, and state and control constraints are included in the system formulation. For better accuracy a second-order model is employed for each output variable, while a first-order model is always used in the available algorithms. For the unconstrained case a simple explicit control law is obtained. A particular feature of the proposed technique is that the predictive functional control principle is used to reduce the computational complexity of the resulting GMBP controller. Extensive simulation examples in industrial and managerial system models support the effectiveness of the present GMBP controller in terms of meeting the desired specifications and having reduced computational requirements.<<ETX>>\",\"PeriodicalId\":344553,\"journal\":{\"name\":\"[1991] Proceedings of the 30th IEEE Conference on Decision and Control\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1991-12-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"[1991] Proceedings of the 30th IEEE Conference on Decision and Control\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CDC.1991.261473\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"[1991] Proceedings of the 30th IEEE Conference on Decision and Control","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CDC.1991.261473","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

摘要

提出了一种统一的广义模型预测控制(GMBPC)技术。这种技术以一种有效的方式结合了以前几种类似mbpc的算法的关键特性。采用多输入多输出(MIMO)状态空间,并将状态约束和控制约束纳入系统公式。为了获得更好的精度,对每个输出变量采用二阶模型,而现有算法通常使用一阶模型。对于无约束情况,得到了一个简单的显式控制律。该技术的一个特点是使用预测函数控制原理来降低GMBP控制器的计算复杂度。工业和管理系统模型中的大量仿真实例支持了当前GMBP控制器在满足所需规格和减少计算需求方面的有效性
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A new generalized model-based predictive control algorithm
A unified generalized model-based predictive control (GMBPC) technique is presented. This technique combines in an efficient way the key properties of several previous MBPC-like algorithms. The multiple-input-multiple-output (MIMO) state-space is employed, and state and control constraints are included in the system formulation. For better accuracy a second-order model is employed for each output variable, while a first-order model is always used in the available algorithms. For the unconstrained case a simple explicit control law is obtained. A particular feature of the proposed technique is that the predictive functional control principle is used to reduce the computational complexity of the resulting GMBP controller. Extensive simulation examples in industrial and managerial system models support the effectiveness of the present GMBP controller in terms of meeting the desired specifications and having reduced computational requirements.<>
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信