基于视觉码本特征增强的图像上下文分类

A. Costea, S. Nedevschi
{"title":"基于视觉码本特征增强的图像上下文分类","authors":"A. Costea, S. Nedevschi","doi":"10.1109/ICCP.2013.6646096","DOIUrl":null,"url":null,"abstract":"This paper presents a method for classifying the context of images. The context of an image can be classified as indoor, outdoor or a more specific scene category. Several state of the art methods use visual codebooks in order to construct global image descriptors and classify the latter using a Support Vector Machine (SVM) classifier. This paper proposes boosting over visual codebook features as an alternative to SVM classification. The boosting based approach has several advantages: fast training and classification time, no need for classifier parameter tuning, efficient combination of different descriptor types, small classifier models. The proposed method performs well on large datasets with many classes and provides state of the art results.","PeriodicalId":380109,"journal":{"name":"2013 IEEE 9th International Conference on Intelligent Computer Communication and Processing (ICCP)","volume":"148 10 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-10-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Image context classification based on visual codebook feature boosting\",\"authors\":\"A. Costea, S. Nedevschi\",\"doi\":\"10.1109/ICCP.2013.6646096\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper presents a method for classifying the context of images. The context of an image can be classified as indoor, outdoor or a more specific scene category. Several state of the art methods use visual codebooks in order to construct global image descriptors and classify the latter using a Support Vector Machine (SVM) classifier. This paper proposes boosting over visual codebook features as an alternative to SVM classification. The boosting based approach has several advantages: fast training and classification time, no need for classifier parameter tuning, efficient combination of different descriptor types, small classifier models. The proposed method performs well on large datasets with many classes and provides state of the art results.\",\"PeriodicalId\":380109,\"journal\":{\"name\":\"2013 IEEE 9th International Conference on Intelligent Computer Communication and Processing (ICCP)\",\"volume\":\"148 10 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-10-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2013 IEEE 9th International Conference on Intelligent Computer Communication and Processing (ICCP)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICCP.2013.6646096\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 IEEE 9th International Conference on Intelligent Computer Communication and Processing (ICCP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCP.2013.6646096","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文提出了一种图像上下文分类方法。图像的背景可以分为室内、室外或更具体的场景类别。目前已有几种方法使用视觉码本来构建全局图像描述符,并使用支持向量机(SVM)分类器对全局图像描述符进行分类。本文提出了基于视觉码本特征的增强方法作为支持向量机分类的替代方法。基于boosting的方法具有训练和分类时间快、不需要对分类器参数进行调优、不同描述符类型的有效组合、分类器模型小等优点。所提出的方法在具有许多类的大型数据集上表现良好,并提供了最先进的结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Image context classification based on visual codebook feature boosting
This paper presents a method for classifying the context of images. The context of an image can be classified as indoor, outdoor or a more specific scene category. Several state of the art methods use visual codebooks in order to construct global image descriptors and classify the latter using a Support Vector Machine (SVM) classifier. This paper proposes boosting over visual codebook features as an alternative to SVM classification. The boosting based approach has several advantages: fast training and classification time, no need for classifier parameter tuning, efficient combination of different descriptor types, small classifier models. The proposed method performs well on large datasets with many classes and provides state of the art results.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信