哪些脑干细胞产生呼吸循环?

Allison W. Irvine, S. Chatzis, G. Tsechpenakis
{"title":"哪些脑干细胞产生呼吸循环?","authors":"Allison W. Irvine, S. Chatzis, G. Tsechpenakis","doi":"10.1109/ISBI.2010.5490412","DOIUrl":null,"url":null,"abstract":"We make a major step towards answering the question posed in the title, using as model the mouse foetus in its 17–19 embryonic days. We use (a) 2-photon microscopy to image the brainstem cell activity ([Ca2+]) in the pre-Boetzinger complex, and (b) electrical recordings from the phrenic nerve, which indicate the diaphragm contraction during inspiration. We classify the brainstem regions (individual cells or groups of cells) into ‘active’ and ‘inactive’, based on whether they contribute or not to the individual electrical signal peaks. As features, we use the Continuous Wavelet Transform-based Semblance responses, for comparing non-periodic and/or periodic-like signals. We use our novel Generative Mixture Model (GMM) possibilistic clustering to obtain the desired classes robustly. This way, we model the inspiration control as a physiological process, which is a crucial step towards understanding how the living brain controls breathing.","PeriodicalId":250523,"journal":{"name":"2010 IEEE International Symposium on Biomedical Imaging: From Nano to Macro","volume":"4 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-04-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Which brainstem cells generate the respiration cycles?\",\"authors\":\"Allison W. Irvine, S. Chatzis, G. Tsechpenakis\",\"doi\":\"10.1109/ISBI.2010.5490412\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We make a major step towards answering the question posed in the title, using as model the mouse foetus in its 17–19 embryonic days. We use (a) 2-photon microscopy to image the brainstem cell activity ([Ca2+]) in the pre-Boetzinger complex, and (b) electrical recordings from the phrenic nerve, which indicate the diaphragm contraction during inspiration. We classify the brainstem regions (individual cells or groups of cells) into ‘active’ and ‘inactive’, based on whether they contribute or not to the individual electrical signal peaks. As features, we use the Continuous Wavelet Transform-based Semblance responses, for comparing non-periodic and/or periodic-like signals. We use our novel Generative Mixture Model (GMM) possibilistic clustering to obtain the desired classes robustly. This way, we model the inspiration control as a physiological process, which is a crucial step towards understanding how the living brain controls breathing.\",\"PeriodicalId\":250523,\"journal\":{\"name\":\"2010 IEEE International Symposium on Biomedical Imaging: From Nano to Macro\",\"volume\":\"4 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2010-04-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2010 IEEE International Symposium on Biomedical Imaging: From Nano to Macro\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ISBI.2010.5490412\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 IEEE International Symposium on Biomedical Imaging: From Nano to Macro","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISBI.2010.5490412","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

我们在回答标题中提出的问题上迈出了重要的一步,我们使用了17-19岁胚胎期的小鼠胎儿作为模型。我们使用(a)双光子显微镜成像脑干细胞在前boetzinger复合体中的活性([Ca2+]), (b)膈神经的电记录,这表明在吸气时膈肌收缩。我们将脑干区域(单个细胞或细胞群)分为“活跃”和“不活跃”,基于它们是否对单个电信号峰值有所贡献。作为特征,我们使用基于连续小波变换的相似响应,用于比较非周期和/或类周期信号。我们使用生成混合模型(GMM)的可能性聚类来鲁棒地获得期望的类。通过这种方式,我们将吸气控制建模为一个生理过程,这是理解活体大脑如何控制呼吸的关键一步。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Which brainstem cells generate the respiration cycles?
We make a major step towards answering the question posed in the title, using as model the mouse foetus in its 17–19 embryonic days. We use (a) 2-photon microscopy to image the brainstem cell activity ([Ca2+]) in the pre-Boetzinger complex, and (b) electrical recordings from the phrenic nerve, which indicate the diaphragm contraction during inspiration. We classify the brainstem regions (individual cells or groups of cells) into ‘active’ and ‘inactive’, based on whether they contribute or not to the individual electrical signal peaks. As features, we use the Continuous Wavelet Transform-based Semblance responses, for comparing non-periodic and/or periodic-like signals. We use our novel Generative Mixture Model (GMM) possibilistic clustering to obtain the desired classes robustly. This way, we model the inspiration control as a physiological process, which is a crucial step towards understanding how the living brain controls breathing.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信