企业多源日志中的异常用户活动检测

Qiaona Hu, Baoming Tang, Derek Lin
{"title":"企业多源日志中的异常用户活动检测","authors":"Qiaona Hu, Baoming Tang, Derek Lin","doi":"10.1109/ICDMW.2017.110","DOIUrl":null,"url":null,"abstract":"Security is one of the top concerns of any enterprise. Most security practitioners in enterprises rely on correlation rules to detect potential threats. While the rules are intuitive to design, each rule is independently defined per log source, unable to collectively address heterogeneity of data from a myriad of enterprise networking and security logs. Furthermore, correlation rules do not look for data events beyond a short time range. To complement the conventional correlation rules-based system, we propose a user activity anomaly detection method. The method first addresses data heterogeneity of multi-source logs by designing a meta data extraction step for event normalization. It then builds user-specific models to flag alerts for users whose currently observed event patterns are sufficiently different from their own patterns in the past.","PeriodicalId":389183,"journal":{"name":"2017 IEEE International Conference on Data Mining Workshops (ICDMW)","volume":"14 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"14","resultStr":"{\"title\":\"Anomalous User Activity Detection in Enterprise Multi-source Logs\",\"authors\":\"Qiaona Hu, Baoming Tang, Derek Lin\",\"doi\":\"10.1109/ICDMW.2017.110\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Security is one of the top concerns of any enterprise. Most security practitioners in enterprises rely on correlation rules to detect potential threats. While the rules are intuitive to design, each rule is independently defined per log source, unable to collectively address heterogeneity of data from a myriad of enterprise networking and security logs. Furthermore, correlation rules do not look for data events beyond a short time range. To complement the conventional correlation rules-based system, we propose a user activity anomaly detection method. The method first addresses data heterogeneity of multi-source logs by designing a meta data extraction step for event normalization. It then builds user-specific models to flag alerts for users whose currently observed event patterns are sufficiently different from their own patterns in the past.\",\"PeriodicalId\":389183,\"journal\":{\"name\":\"2017 IEEE International Conference on Data Mining Workshops (ICDMW)\",\"volume\":\"14 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"14\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2017 IEEE International Conference on Data Mining Workshops (ICDMW)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICDMW.2017.110\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 IEEE International Conference on Data Mining Workshops (ICDMW)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICDMW.2017.110","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 14

摘要

安全是任何企业最关心的问题之一。企业中的大多数安全从业者都依赖于相关规则来检测潜在的威胁。虽然规则的设计很直观,但每个规则都是针对每个日志源独立定义的,无法共同处理来自无数企业网络和安全日志的数据的异构性。此外,相关规则不查找超出短时间范围的数据事件。为了补充传统的基于关联规则的系统,我们提出了一种用户活动异常检测方法。该方法首先通过设计用于事件规范化的元数据提取步骤,解决了多源日志数据的异构性问题。然后,它构建特定于用户的模型,为当前观察到的事件模式与他们自己过去的模式有很大不同的用户标记警报。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Anomalous User Activity Detection in Enterprise Multi-source Logs
Security is one of the top concerns of any enterprise. Most security practitioners in enterprises rely on correlation rules to detect potential threats. While the rules are intuitive to design, each rule is independently defined per log source, unable to collectively address heterogeneity of data from a myriad of enterprise networking and security logs. Furthermore, correlation rules do not look for data events beyond a short time range. To complement the conventional correlation rules-based system, we propose a user activity anomaly detection method. The method first addresses data heterogeneity of multi-source logs by designing a meta data extraction step for event normalization. It then builds user-specific models to flag alerts for users whose currently observed event patterns are sufficiently different from their own patterns in the past.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信