稀疏字典学习和逐源滤波的盲分离

Annan Dong, O. Simeone, A. Haimovich, J. Dabin
{"title":"稀疏字典学习和逐源滤波的盲分离","authors":"Annan Dong, O. Simeone, A. Haimovich, J. Dabin","doi":"10.1109/CISS.2019.8693055","DOIUrl":null,"url":null,"abstract":"Radio frequency sources are observed at a fusion center via sensor measurements made over slow unknown flat-fading channels. The number of sources may be larger than the number of sensors, but their activity is sparse and intermittent with bursty transmission patterns accounted by hidden Markov models. The problem of blind source estimation in the absence of channel state information is tackled via a novel algorithm, consisting of a dictionary learning (DL) stage and a per-source stochastic filtering (PSF) stage. To this end, smooth LASSO is integrated with DL, while the forward-backward algorithm is leveraged for PSF. It is shown that the proposed algorithm can enhance the detection performance of the sources.","PeriodicalId":123696,"journal":{"name":"2019 53rd Annual Conference on Information Sciences and Systems (CISS)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-04-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Sparse Dictionary Learning and Per-source Filtering for Blind Radio Source Separation\",\"authors\":\"Annan Dong, O. Simeone, A. Haimovich, J. Dabin\",\"doi\":\"10.1109/CISS.2019.8693055\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Radio frequency sources are observed at a fusion center via sensor measurements made over slow unknown flat-fading channels. The number of sources may be larger than the number of sensors, but their activity is sparse and intermittent with bursty transmission patterns accounted by hidden Markov models. The problem of blind source estimation in the absence of channel state information is tackled via a novel algorithm, consisting of a dictionary learning (DL) stage and a per-source stochastic filtering (PSF) stage. To this end, smooth LASSO is integrated with DL, while the forward-backward algorithm is leveraged for PSF. It is shown that the proposed algorithm can enhance the detection performance of the sources.\",\"PeriodicalId\":123696,\"journal\":{\"name\":\"2019 53rd Annual Conference on Information Sciences and Systems (CISS)\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-04-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 53rd Annual Conference on Information Sciences and Systems (CISS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CISS.2019.8693055\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 53rd Annual Conference on Information Sciences and Systems (CISS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CISS.2019.8693055","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

射频源是通过传感器测量在一个融合中心进行的缓慢未知的平坦衰落信道。源的数量可能大于传感器的数量,但它们的活动是稀疏的和间歇性的,具有由隐马尔可夫模型计算的突发传输模式。通过一种新的算法,包括字典学习(DL)阶段和逐源随机滤波(PSF)阶段,解决了信道状态信息缺失时的盲源估计问题。为此,将平滑LASSO与深度学习相结合,而将前向向后算法用于PSF。实验结果表明,该算法能有效地提高信号源的检测性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Sparse Dictionary Learning and Per-source Filtering for Blind Radio Source Separation
Radio frequency sources are observed at a fusion center via sensor measurements made over slow unknown flat-fading channels. The number of sources may be larger than the number of sensors, but their activity is sparse and intermittent with bursty transmission patterns accounted by hidden Markov models. The problem of blind source estimation in the absence of channel state information is tackled via a novel algorithm, consisting of a dictionary learning (DL) stage and a per-source stochastic filtering (PSF) stage. To this end, smooth LASSO is integrated with DL, while the forward-backward algorithm is leveraged for PSF. It is shown that the proposed algorithm can enhance the detection performance of the sources.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信