3bij3 -开发一个研究推荐系统及其效果的框架

Felicia Loecherbach, D. Trilling
{"title":"3bij3 -开发一个研究推荐系统及其效果的框架","authors":"Felicia Loecherbach, D. Trilling","doi":"10.31235/osf.io/vw2dr","DOIUrl":null,"url":null,"abstract":"\n Today’s online news environment is increasingly characterized by personalized news selections, relying on algorithmic solutions for extracting relevant articles and composing an individual’s news diet. Yet, the impact of such recommendation algorithms on how we consume and perceive news is still understudied. We therefore developed one of the first software solutions to conduct studies on effects of news recommender systems in a realistic setting. The web app of our framework (called 3bij3) displays real-time news articles selected by different mechanisms. 3bij3 can be used to conduct large-scale field experiments, in which participants’ use of the site can be tracked over extended periods of time. Compared to previous work, 3bij3 gives researchers control over the recommendation system under study and creates a realistic environment for the participants. It integrates web scraping, different methods to compare and classify news articles, different recommender systems, a web interface for participants, gamification elements, and a user survey to enrich the behavioural measures obtained.","PeriodicalId":275035,"journal":{"name":"Computational Communication Research","volume":"18 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-10-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":"{\"title\":\"3bij3 – Developing a framework for researching recommender systems and their effects\",\"authors\":\"Felicia Loecherbach, D. Trilling\",\"doi\":\"10.31235/osf.io/vw2dr\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n Today’s online news environment is increasingly characterized by personalized news selections, relying on algorithmic solutions for extracting relevant articles and composing an individual’s news diet. Yet, the impact of such recommendation algorithms on how we consume and perceive news is still understudied. We therefore developed one of the first software solutions to conduct studies on effects of news recommender systems in a realistic setting. The web app of our framework (called 3bij3) displays real-time news articles selected by different mechanisms. 3bij3 can be used to conduct large-scale field experiments, in which participants’ use of the site can be tracked over extended periods of time. Compared to previous work, 3bij3 gives researchers control over the recommendation system under study and creates a realistic environment for the participants. It integrates web scraping, different methods to compare and classify news articles, different recommender systems, a web interface for participants, gamification elements, and a user survey to enrich the behavioural measures obtained.\",\"PeriodicalId\":275035,\"journal\":{\"name\":\"Computational Communication Research\",\"volume\":\"18 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-10-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"8\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Computational Communication Research\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.31235/osf.io/vw2dr\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computational Communication Research","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.31235/osf.io/vw2dr","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 8

摘要

今天的网络新闻环境越来越以个性化的新闻选择为特征,依靠算法解决方案提取相关文章,构成个人的新闻饮食。然而,这种推荐算法对我们如何消费和感知新闻的影响仍未得到充分研究。因此,我们开发了第一个软件解决方案,在现实环境中对新闻推荐系统的影响进行研究。我们框架的web应用程序(称为3bij3)显示通过不同机制选择的实时新闻文章。3bij3可以用来进行大规模的现场实验,在实验中可以长时间跟踪参与者对该网站的使用情况。与之前的工作相比,3bij3使研究人员能够控制所研究的推荐系统,并为参与者创造了一个真实的环境。它集成了网络抓取、不同的新闻文章比较和分类方法、不同的推荐系统、参与者的web界面、游戏化元素和用户调查,以丰富所获得的行为测量。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
3bij3 – Developing a framework for researching recommender systems and their effects
Today’s online news environment is increasingly characterized by personalized news selections, relying on algorithmic solutions for extracting relevant articles and composing an individual’s news diet. Yet, the impact of such recommendation algorithms on how we consume and perceive news is still understudied. We therefore developed one of the first software solutions to conduct studies on effects of news recommender systems in a realistic setting. The web app of our framework (called 3bij3) displays real-time news articles selected by different mechanisms. 3bij3 can be used to conduct large-scale field experiments, in which participants’ use of the site can be tracked over extended periods of time. Compared to previous work, 3bij3 gives researchers control over the recommendation system under study and creates a realistic environment for the participants. It integrates web scraping, different methods to compare and classify news articles, different recommender systems, a web interface for participants, gamification elements, and a user survey to enrich the behavioural measures obtained.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信