确保学习能力增强的自主系统*

Nandith Narayan, Parth Ganeriwala, Randolph M. Jones, M. Matessa, S. Bhattacharyya, Jennifer Davis, Hemant Purohit, Simone Fulvio Rollini
{"title":"确保学习能力增强的自主系统*","authors":"Nandith Narayan, Parth Ganeriwala, Randolph M. Jones, M. Matessa, S. Bhattacharyya, Jennifer Davis, Hemant Purohit, Simone Fulvio Rollini","doi":"10.1109/SysCon53073.2023.10131227","DOIUrl":null,"url":null,"abstract":"Autonomous agents are expected to intelligently handle emerging situations with appropriate interaction with humans, while executing the operations. This is possible today with the integration of advanced technologies, such as machine learning, but these complex algorithms pose a challenge to verification and thus the eventual certification of the autonomous agent. In the discussed approach, we illustrate how safety properties for a learning-enabled increasingly autonomous agent can be formally verified early in the design phase. We demonstrate this methodology by designing a learning-enabled increasingly autonomous agent in a cognitive architecture, Soar. The agent includes symbolic decision logic with numeric decision preferences that are tuned by reinforcement learning to produce post-learning decision knowledge. The agent is then automatically translated into nuXmv, and properties are verified over the agent.","PeriodicalId":169296,"journal":{"name":"2023 IEEE International Systems Conference (SysCon)","volume":"5 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-04-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Assuring Learning-Enabled Increasingly Autonomous Systems*\",\"authors\":\"Nandith Narayan, Parth Ganeriwala, Randolph M. Jones, M. Matessa, S. Bhattacharyya, Jennifer Davis, Hemant Purohit, Simone Fulvio Rollini\",\"doi\":\"10.1109/SysCon53073.2023.10131227\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Autonomous agents are expected to intelligently handle emerging situations with appropriate interaction with humans, while executing the operations. This is possible today with the integration of advanced technologies, such as machine learning, but these complex algorithms pose a challenge to verification and thus the eventual certification of the autonomous agent. In the discussed approach, we illustrate how safety properties for a learning-enabled increasingly autonomous agent can be formally verified early in the design phase. We demonstrate this methodology by designing a learning-enabled increasingly autonomous agent in a cognitive architecture, Soar. The agent includes symbolic decision logic with numeric decision preferences that are tuned by reinforcement learning to produce post-learning decision knowledge. The agent is then automatically translated into nuXmv, and properties are verified over the agent.\",\"PeriodicalId\":169296,\"journal\":{\"name\":\"2023 IEEE International Systems Conference (SysCon)\",\"volume\":\"5 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-04-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2023 IEEE International Systems Conference (SysCon)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SysCon53073.2023.10131227\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2023 IEEE International Systems Conference (SysCon)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SysCon53073.2023.10131227","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

期望自主代理在执行操作的同时,通过与人类的适当交互,智能地处理新出现的情况。如今,随着机器学习等先进技术的整合,这是可能的,但这些复杂的算法对验证构成了挑战,因此对自主代理的最终认证也构成了挑战。在讨论的方法中,我们说明了如何在设计阶段早期正式验证支持学习的日益自治的代理的安全属性。我们通过在认知架构Soar中设计一个支持学习的日益自主的代理来演示这种方法。该智能体包括具有数字决策偏好的符号决策逻辑,这些决策偏好通过强化学习进行调整,以产生学习后的决策知识。然后将代理自动转换为nuXmv,并在代理上验证属性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Assuring Learning-Enabled Increasingly Autonomous Systems*
Autonomous agents are expected to intelligently handle emerging situations with appropriate interaction with humans, while executing the operations. This is possible today with the integration of advanced technologies, such as machine learning, but these complex algorithms pose a challenge to verification and thus the eventual certification of the autonomous agent. In the discussed approach, we illustrate how safety properties for a learning-enabled increasingly autonomous agent can be formally verified early in the design phase. We demonstrate this methodology by designing a learning-enabled increasingly autonomous agent in a cognitive architecture, Soar. The agent includes symbolic decision logic with numeric decision preferences that are tuned by reinforcement learning to produce post-learning decision knowledge. The agent is then automatically translated into nuXmv, and properties are verified over the agent.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信