双分量Camassa-Holm系统完全可积性的拉格朗日观点

Jonathan Eckhardt, Katrin Grunert
{"title":"双分量Camassa-Holm系统完全可积性的拉格朗日观点","authors":"Jonathan Eckhardt, Katrin Grunert","doi":"10.1093/integr/xyx002","DOIUrl":null,"url":null,"abstract":"We show how the change from Eulerian to Lagrangian coordinates for the two-component Camassa–Holm system can be understood in terms of certain reparametrizations of the underlying isospectral problem. The respective coordinates correspond to different normalizations of an associated first order system. In particular, we will see that the two-component Camassa–Holm system in Lagrangian variables is completely integrable as well.","PeriodicalId":242196,"journal":{"name":"Journal of Integrable Systems","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-05-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":"{\"title\":\"A Lagrangian View on Complete Integrability of the Two-Component Camassa–Holm System\",\"authors\":\"Jonathan Eckhardt, Katrin Grunert\",\"doi\":\"10.1093/integr/xyx002\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We show how the change from Eulerian to Lagrangian coordinates for the two-component Camassa–Holm system can be understood in terms of certain reparametrizations of the underlying isospectral problem. The respective coordinates correspond to different normalizations of an associated first order system. In particular, we will see that the two-component Camassa–Holm system in Lagrangian variables is completely integrable as well.\",\"PeriodicalId\":242196,\"journal\":{\"name\":\"Journal of Integrable Systems\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-05-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Integrable Systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1093/integr/xyx002\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Integrable Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1093/integr/xyx002","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

摘要

我们展示了双分量Camassa-Holm系统从欧拉坐标到拉格朗日坐标的变化如何可以根据潜在等谱问题的某些重新参数化来理解。各自的坐标对应于相关一阶系统的不同归一化。特别地,我们将看到在拉格朗日变量下的双分量Camassa-Holm系统也是完全可积的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A Lagrangian View on Complete Integrability of the Two-Component Camassa–Holm System
We show how the change from Eulerian to Lagrangian coordinates for the two-component Camassa–Holm system can be understood in terms of certain reparametrizations of the underlying isospectral problem. The respective coordinates correspond to different normalizations of an associated first order system. In particular, we will see that the two-component Camassa–Holm system in Lagrangian variables is completely integrable as well.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信