{"title":"双分量Camassa-Holm系统完全可积性的拉格朗日观点","authors":"Jonathan Eckhardt, Katrin Grunert","doi":"10.1093/integr/xyx002","DOIUrl":null,"url":null,"abstract":"We show how the change from Eulerian to Lagrangian coordinates for the two-component Camassa–Holm system can be understood in terms of certain reparametrizations of the underlying isospectral problem. The respective coordinates correspond to different normalizations of an associated first order system. In particular, we will see that the two-component Camassa–Holm system in Lagrangian variables is completely integrable as well.","PeriodicalId":242196,"journal":{"name":"Journal of Integrable Systems","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-05-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":"{\"title\":\"A Lagrangian View on Complete Integrability of the Two-Component Camassa–Holm System\",\"authors\":\"Jonathan Eckhardt, Katrin Grunert\",\"doi\":\"10.1093/integr/xyx002\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We show how the change from Eulerian to Lagrangian coordinates for the two-component Camassa–Holm system can be understood in terms of certain reparametrizations of the underlying isospectral problem. The respective coordinates correspond to different normalizations of an associated first order system. In particular, we will see that the two-component Camassa–Holm system in Lagrangian variables is completely integrable as well.\",\"PeriodicalId\":242196,\"journal\":{\"name\":\"Journal of Integrable Systems\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-05-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Integrable Systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1093/integr/xyx002\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Integrable Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1093/integr/xyx002","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
A Lagrangian View on Complete Integrability of the Two-Component Camassa–Holm System
We show how the change from Eulerian to Lagrangian coordinates for the two-component Camassa–Holm system can be understood in terms of certain reparametrizations of the underlying isospectral problem. The respective coordinates correspond to different normalizations of an associated first order system. In particular, we will see that the two-component Camassa–Holm system in Lagrangian variables is completely integrable as well.