线性化二次和高阶最短路径问题的线性时间算法

E. Çela, Bettina Klinz, Stefan Lendl, G. Woeginger, Lasse Wulf
{"title":"线性化二次和高阶最短路径问题的线性时间算法","authors":"E. Çela, Bettina Klinz, Stefan Lendl, G. Woeginger, Lasse Wulf","doi":"10.48550/arXiv.2303.00569","DOIUrl":null,"url":null,"abstract":"An instance of the NP-hard Quadratic Shortest Path Problem (QSPP) is called linearizable iff it is equivalent to an instance of the classic Shortest Path Problem (SPP) on the same input digraph. The linearization problem for the QSPP (LinQSPP) decides whether a given QSPP instance is linearizable and determines the corresponding SPP instance in the positive case. We provide a novel linear time algorithm for the LinQSPP on acyclic digraphs which runs considerably faster than the previously best algorithm. The algorithm is based on a new insight revealing that the linearizability of the QSPP for acyclic digraphs can be seen as a local property. Our approach extends to the more general higher-order shortest path problem.","PeriodicalId":421894,"journal":{"name":"Conference on Integer Programming and Combinatorial Optimization","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"A linear time algorithm for linearizing quadratic and higher-order shortest path problems\",\"authors\":\"E. Çela, Bettina Klinz, Stefan Lendl, G. Woeginger, Lasse Wulf\",\"doi\":\"10.48550/arXiv.2303.00569\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"An instance of the NP-hard Quadratic Shortest Path Problem (QSPP) is called linearizable iff it is equivalent to an instance of the classic Shortest Path Problem (SPP) on the same input digraph. The linearization problem for the QSPP (LinQSPP) decides whether a given QSPP instance is linearizable and determines the corresponding SPP instance in the positive case. We provide a novel linear time algorithm for the LinQSPP on acyclic digraphs which runs considerably faster than the previously best algorithm. The algorithm is based on a new insight revealing that the linearizability of the QSPP for acyclic digraphs can be seen as a local property. Our approach extends to the more general higher-order shortest path problem.\",\"PeriodicalId\":421894,\"journal\":{\"name\":\"Conference on Integer Programming and Combinatorial Optimization\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-03-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Conference on Integer Programming and Combinatorial Optimization\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.48550/arXiv.2303.00569\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Conference on Integer Programming and Combinatorial Optimization","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.48550/arXiv.2303.00569","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

np困难的二次最短路径问题(QSPP)的实例被称为线性化的,如果它等价于相同输入有向图上的经典最短路径问题(SPP)的实例。QSPP (LinQSPP)的线性化问题决定给定的QSPP实例是否可线性化,并确定在正情况下对应的SPP实例。我们提出了一种新的线性时间算法来求解无循环有向图上的LinQSPP,它的运行速度比以前最好的算法要快得多。该算法基于一个新的见解,揭示了无环有向图的QSPP的线性性可以看作是一个局部性质。我们的方法扩展到更一般的高阶最短路径问题。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A linear time algorithm for linearizing quadratic and higher-order shortest path problems
An instance of the NP-hard Quadratic Shortest Path Problem (QSPP) is called linearizable iff it is equivalent to an instance of the classic Shortest Path Problem (SPP) on the same input digraph. The linearization problem for the QSPP (LinQSPP) decides whether a given QSPP instance is linearizable and determines the corresponding SPP instance in the positive case. We provide a novel linear time algorithm for the LinQSPP on acyclic digraphs which runs considerably faster than the previously best algorithm. The algorithm is based on a new insight revealing that the linearizability of the QSPP for acyclic digraphs can be seen as a local property. Our approach extends to the more general higher-order shortest path problem.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信