最优参数估计量的收敛逼近

D. Wiberg, D.C. DeWolf
{"title":"最优参数估计量的收敛逼近","authors":"D. Wiberg, D.C. DeWolf","doi":"10.1109/CDC.1991.261771","DOIUrl":null,"url":null,"abstract":"Continuous time linear stochastic systems with unknown bilinear parameters are considered. A specific approximation to the optimal nonlinear filter used as a recursive parameter estimator is derived by retaining third-order moments and using a Gaussian approximation for higher-order moments. With probability one, the specific approximation is proven to converge to a minimum of the likelihood function. The proof uses the ordinary differential equation technique and requires that the slow system is bounded on finite time intervals and the fixed-parameter fast system is asymptotically stable. The fixed parameter fast system is proven asymptotically stable if the parameter update gain is small enough. Essentially, the specific approximation is asymptotically equivalent to the recursive prediction error method, thus inheriting its asymptotic rate of convergence. A numerical simulation for a simple example indicates that the specific approximation has better transient response than other commonly used parameter estimators.<<ETX>>","PeriodicalId":344553,"journal":{"name":"[1991] Proceedings of the 30th IEEE Conference on Decision and Control","volume":"2147 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1991-12-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"A convergent approximation of the optimal parameter estimator\",\"authors\":\"D. Wiberg, D.C. DeWolf\",\"doi\":\"10.1109/CDC.1991.261771\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Continuous time linear stochastic systems with unknown bilinear parameters are considered. A specific approximation to the optimal nonlinear filter used as a recursive parameter estimator is derived by retaining third-order moments and using a Gaussian approximation for higher-order moments. With probability one, the specific approximation is proven to converge to a minimum of the likelihood function. The proof uses the ordinary differential equation technique and requires that the slow system is bounded on finite time intervals and the fixed-parameter fast system is asymptotically stable. The fixed parameter fast system is proven asymptotically stable if the parameter update gain is small enough. Essentially, the specific approximation is asymptotically equivalent to the recursive prediction error method, thus inheriting its asymptotic rate of convergence. A numerical simulation for a simple example indicates that the specific approximation has better transient response than other commonly used parameter estimators.<<ETX>>\",\"PeriodicalId\":344553,\"journal\":{\"name\":\"[1991] Proceedings of the 30th IEEE Conference on Decision and Control\",\"volume\":\"2147 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1991-12-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"[1991] Proceedings of the 30th IEEE Conference on Decision and Control\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CDC.1991.261771\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"[1991] Proceedings of the 30th IEEE Conference on Decision and Control","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CDC.1991.261771","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

摘要

研究具有未知双线性参数的连续时间线性随机系统。通过保留三阶矩和使用高阶矩的高斯近似,推导出了最优非线性滤波器作为递归参数估计器的特定近似。在概率为1的情况下,证明了特定的近似收敛于似然函数的最小值。该证明采用常微分方程技术,要求慢系统在有限时间区间上有界,定参数快系统渐近稳定。当参数更新增益足够小时,证明了固定参数快速系统的渐近稳定。从本质上讲,具体的近似近似近似于递推预测误差方法的渐近等价,从而继承了递推预测误差方法的渐近收敛速度。一个简单实例的数值模拟表明,该近似比其他常用的参数估计具有更好的瞬态响应
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A convergent approximation of the optimal parameter estimator
Continuous time linear stochastic systems with unknown bilinear parameters are considered. A specific approximation to the optimal nonlinear filter used as a recursive parameter estimator is derived by retaining third-order moments and using a Gaussian approximation for higher-order moments. With probability one, the specific approximation is proven to converge to a minimum of the likelihood function. The proof uses the ordinary differential equation technique and requires that the slow system is bounded on finite time intervals and the fixed-parameter fast system is asymptotically stable. The fixed parameter fast system is proven asymptotically stable if the parameter update gain is small enough. Essentially, the specific approximation is asymptotically equivalent to the recursive prediction error method, thus inheriting its asymptotic rate of convergence. A numerical simulation for a simple example indicates that the specific approximation has better transient response than other commonly used parameter estimators.<>
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信