SODA:具有优化数据流架构的模板

Yuze Chi, J. Cong, Peng Wei, Peipei Zhou
{"title":"SODA:具有优化数据流架构的模板","authors":"Yuze Chi, J. Cong, Peng Wei, Peipei Zhou","doi":"10.1145/3240765.3240850","DOIUrl":null,"url":null,"abstract":"Stencil computation is one of the most important kernels in many application domains such as image processing, solving partial differential equations, and cellular automata. Many of the stencil kernels are complex, usually consist of multiple stages or iterations, and are often computation-bounded. Such kernels are often offloaded to FPGAs to take advantages of the efficiency of dedicated hardware. However, implementing such complex kernels efficiently is not trivial, due to complicated data dependencies, difficulties of programming FPGAs with RTL, as well as large design space. In this paper we present SODA, an automated framework for implementing Stencil algorithms with Optimized Dataflow Architecture on FPGAs. The SODA microarchitecture minimizes the on-chip reuse buffer size required by full data reuse and provides flexible and scalable fine-grained parallelism. The SODA automation framework takes high-level user input and generates efficient, high-frequency dataflow implementation. This significantly reduces the difficulty of programming FPGAs efficiently for stencil algorithms. The SODA design-space exploration framework models the resource constraints and searches for the performance-optimized configuration with accurate models for post-synthesis resource utilization and on-board execution throughput. Experimental results from on-board execution using a wide range of benchmarks show up to 3.28x speed up over 24-thread CPU and our fully automated framework achieves better performance compared with manually designed state-of-the-art FPGA accelerators.","PeriodicalId":413037,"journal":{"name":"2018 IEEE/ACM International Conference on Computer-Aided Design (ICCAD)","volume":"27 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-11-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"71","resultStr":"{\"title\":\"SODA: Stencil with Optimized Dataflow Architecture\",\"authors\":\"Yuze Chi, J. Cong, Peng Wei, Peipei Zhou\",\"doi\":\"10.1145/3240765.3240850\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Stencil computation is one of the most important kernels in many application domains such as image processing, solving partial differential equations, and cellular automata. Many of the stencil kernels are complex, usually consist of multiple stages or iterations, and are often computation-bounded. Such kernels are often offloaded to FPGAs to take advantages of the efficiency of dedicated hardware. However, implementing such complex kernels efficiently is not trivial, due to complicated data dependencies, difficulties of programming FPGAs with RTL, as well as large design space. In this paper we present SODA, an automated framework for implementing Stencil algorithms with Optimized Dataflow Architecture on FPGAs. The SODA microarchitecture minimizes the on-chip reuse buffer size required by full data reuse and provides flexible and scalable fine-grained parallelism. The SODA automation framework takes high-level user input and generates efficient, high-frequency dataflow implementation. This significantly reduces the difficulty of programming FPGAs efficiently for stencil algorithms. The SODA design-space exploration framework models the resource constraints and searches for the performance-optimized configuration with accurate models for post-synthesis resource utilization and on-board execution throughput. Experimental results from on-board execution using a wide range of benchmarks show up to 3.28x speed up over 24-thread CPU and our fully automated framework achieves better performance compared with manually designed state-of-the-art FPGA accelerators.\",\"PeriodicalId\":413037,\"journal\":{\"name\":\"2018 IEEE/ACM International Conference on Computer-Aided Design (ICCAD)\",\"volume\":\"27 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-11-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"71\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2018 IEEE/ACM International Conference on Computer-Aided Design (ICCAD)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3240765.3240850\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 IEEE/ACM International Conference on Computer-Aided Design (ICCAD)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3240765.3240850","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 71

摘要

模板计算是图像处理、求解偏微分方程和元胞自动机等许多应用领域中最重要的核心之一。许多模板内核是复杂的,通常由多个阶段或迭代组成,并且通常是计算有限的。这样的内核通常被卸载到fpga上,以利用专用硬件的效率。然而,由于复杂的数据依赖关系,使用RTL编程fpga的困难以及较大的设计空间,高效地实现这种复杂的内核并非易事。在本文中,我们提出了SODA,一个在fpga上实现具有优化数据流架构的模板算法的自动化框架。SODA微体系结构将完全数据重用所需的片上重用缓冲区大小最小化,并提供灵活和可扩展的细粒度并行性。SODA自动化框架接受高级用户输入,并生成高效、高频的数据流实现。这大大降低了模板算法的fpga编程难度。SODA设计空间探索框架对资源约束进行建模,并使用合成后资源利用率和机载执行吞吐量的精确模型搜索性能优化配置。使用广泛基准测试的板上执行的实验结果显示,在24线程CPU上速度高达3.28倍,与手动设计的最先进的FPGA加速器相比,我们的全自动框架实现了更好的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
SODA: Stencil with Optimized Dataflow Architecture
Stencil computation is one of the most important kernels in many application domains such as image processing, solving partial differential equations, and cellular automata. Many of the stencil kernels are complex, usually consist of multiple stages or iterations, and are often computation-bounded. Such kernels are often offloaded to FPGAs to take advantages of the efficiency of dedicated hardware. However, implementing such complex kernels efficiently is not trivial, due to complicated data dependencies, difficulties of programming FPGAs with RTL, as well as large design space. In this paper we present SODA, an automated framework for implementing Stencil algorithms with Optimized Dataflow Architecture on FPGAs. The SODA microarchitecture minimizes the on-chip reuse buffer size required by full data reuse and provides flexible and scalable fine-grained parallelism. The SODA automation framework takes high-level user input and generates efficient, high-frequency dataflow implementation. This significantly reduces the difficulty of programming FPGAs efficiently for stencil algorithms. The SODA design-space exploration framework models the resource constraints and searches for the performance-optimized configuration with accurate models for post-synthesis resource utilization and on-board execution throughput. Experimental results from on-board execution using a wide range of benchmarks show up to 3.28x speed up over 24-thread CPU and our fully automated framework achieves better performance compared with manually designed state-of-the-art FPGA accelerators.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信