{"title":"配对属性学习:利用配对特征构建网络","authors":"Tony R. Martinez, martinez","doi":"10.1109/IJCNN.2002.1007546","DOIUrl":null,"url":null,"abstract":"We present the pair attribute learning (PAL) algorithm for the selection of relevant inputs and network topology. Correlations on training instance pairs are used to drive network construction of a single-hidden layer MLP. Results on nine learning problems demonstrate 70% less complexity, on average, without a significant loss of accuracy.","PeriodicalId":382771,"journal":{"name":"Proceedings of the 2002 International Joint Conference on Neural Networks. IJCNN'02 (Cat. No.02CH37290)","volume":"39 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2002-08-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Pair attribute learning: network construction using pair features\",\"authors\":\"Tony R. Martinez, martinez\",\"doi\":\"10.1109/IJCNN.2002.1007546\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We present the pair attribute learning (PAL) algorithm for the selection of relevant inputs and network topology. Correlations on training instance pairs are used to drive network construction of a single-hidden layer MLP. Results on nine learning problems demonstrate 70% less complexity, on average, without a significant loss of accuracy.\",\"PeriodicalId\":382771,\"journal\":{\"name\":\"Proceedings of the 2002 International Joint Conference on Neural Networks. IJCNN'02 (Cat. No.02CH37290)\",\"volume\":\"39 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2002-08-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 2002 International Joint Conference on Neural Networks. IJCNN'02 (Cat. No.02CH37290)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IJCNN.2002.1007546\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2002 International Joint Conference on Neural Networks. IJCNN'02 (Cat. No.02CH37290)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IJCNN.2002.1007546","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Pair attribute learning: network construction using pair features
We present the pair attribute learning (PAL) algorithm for the selection of relevant inputs and network topology. Correlations on training instance pairs are used to drive network construction of a single-hidden layer MLP. Results on nine learning problems demonstrate 70% less complexity, on average, without a significant loss of accuracy.