配对属性学习:利用配对特征构建网络

Tony R. Martinez, martinez
{"title":"配对属性学习:利用配对特征构建网络","authors":"Tony R. Martinez, martinez","doi":"10.1109/IJCNN.2002.1007546","DOIUrl":null,"url":null,"abstract":"We present the pair attribute learning (PAL) algorithm for the selection of relevant inputs and network topology. Correlations on training instance pairs are used to drive network construction of a single-hidden layer MLP. Results on nine learning problems demonstrate 70% less complexity, on average, without a significant loss of accuracy.","PeriodicalId":382771,"journal":{"name":"Proceedings of the 2002 International Joint Conference on Neural Networks. IJCNN'02 (Cat. No.02CH37290)","volume":"39 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2002-08-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Pair attribute learning: network construction using pair features\",\"authors\":\"Tony R. Martinez, martinez\",\"doi\":\"10.1109/IJCNN.2002.1007546\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We present the pair attribute learning (PAL) algorithm for the selection of relevant inputs and network topology. Correlations on training instance pairs are used to drive network construction of a single-hidden layer MLP. Results on nine learning problems demonstrate 70% less complexity, on average, without a significant loss of accuracy.\",\"PeriodicalId\":382771,\"journal\":{\"name\":\"Proceedings of the 2002 International Joint Conference on Neural Networks. IJCNN'02 (Cat. No.02CH37290)\",\"volume\":\"39 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2002-08-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 2002 International Joint Conference on Neural Networks. IJCNN'02 (Cat. No.02CH37290)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IJCNN.2002.1007546\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2002 International Joint Conference on Neural Networks. IJCNN'02 (Cat. No.02CH37290)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IJCNN.2002.1007546","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

我们提出了对属性学习(PAL)算法来选择相关输入和网络拓扑。利用训练实例对的相关性驱动单隐层MLP的网络构建。9个学习问题的结果显示,平均而言,复杂性降低了70%,而准确性没有显著下降。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Pair attribute learning: network construction using pair features
We present the pair attribute learning (PAL) algorithm for the selection of relevant inputs and network topology. Correlations on training instance pairs are used to drive network construction of a single-hidden layer MLP. Results on nine learning problems demonstrate 70% less complexity, on average, without a significant loss of accuracy.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信