基于Ritz方法的弹性杆运动最优控制问题验证解

G. Kostin
{"title":"基于Ritz方法的弹性杆运动最优控制问题验证解","authors":"G. Kostin","doi":"10.14232/actacyb.24.3.2020.7","DOIUrl":null,"url":null,"abstract":"To model vibrations in flexible structures, a variational formulation of PDE control problems is considered in the frame of the method of integrodifferential relations. This approach allows to estimate a posteriori the quality of finite-dimensional approximations and, as a result, either to refine or coarsen them if necessary. Such estimates also make it possible to correct the input signals. The related control law is regularized via a quadratic cost functional including the discrepancy of the constitutive equations. Procedures for solving optimization problems in dynamics of linear elasticity have been developed based on the Ritz method and FEM. The verification of optimized control for elastic rod motion involves the local and integral error estimates proposed. A FEM solver for mechanical systems with varying distributed parameters and linear boundary conditions of different kinds is presented.","PeriodicalId":187125,"journal":{"name":"Acta Cybern.","volume":"24 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-03-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Verified Solution to Optimal Control Problems of Elastic Rod Motion Based on the Ritz Method\",\"authors\":\"G. Kostin\",\"doi\":\"10.14232/actacyb.24.3.2020.7\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"To model vibrations in flexible structures, a variational formulation of PDE control problems is considered in the frame of the method of integrodifferential relations. This approach allows to estimate a posteriori the quality of finite-dimensional approximations and, as a result, either to refine or coarsen them if necessary. Such estimates also make it possible to correct the input signals. The related control law is regularized via a quadratic cost functional including the discrepancy of the constitutive equations. Procedures for solving optimization problems in dynamics of linear elasticity have been developed based on the Ritz method and FEM. The verification of optimized control for elastic rod motion involves the local and integral error estimates proposed. A FEM solver for mechanical systems with varying distributed parameters and linear boundary conditions of different kinds is presented.\",\"PeriodicalId\":187125,\"journal\":{\"name\":\"Acta Cybern.\",\"volume\":\"24 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-03-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Acta Cybern.\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.14232/actacyb.24.3.2020.7\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Acta Cybern.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.14232/actacyb.24.3.2020.7","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

为了对柔性结构的振动进行建模,在积分微分关系方法的框架内考虑了偏微分方程控制问题的变分形式。这种方法允许后验估计有限维近似的质量,因此,如果必要的话,可以对它们进行改进或粗化。这样的估计也使校正输入信号成为可能。通过包含本构方程差异的二次代价泛函对相关控制律进行正则化。基于里兹法和有限元法,开发了求解线弹性动力学优化问题的程序。对弹性杆运动优化控制的验证包括提出的局部误差估计和积分误差估计。提出了具有不同分布参数和不同线性边界条件的机械系统的有限元求解方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Verified Solution to Optimal Control Problems of Elastic Rod Motion Based on the Ritz Method
To model vibrations in flexible structures, a variational formulation of PDE control problems is considered in the frame of the method of integrodifferential relations. This approach allows to estimate a posteriori the quality of finite-dimensional approximations and, as a result, either to refine or coarsen them if necessary. Such estimates also make it possible to correct the input signals. The related control law is regularized via a quadratic cost functional including the discrepancy of the constitutive equations. Procedures for solving optimization problems in dynamics of linear elasticity have been developed based on the Ritz method and FEM. The verification of optimized control for elastic rod motion involves the local and integral error estimates proposed. A FEM solver for mechanical systems with varying distributed parameters and linear boundary conditions of different kinds is presented.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信