人机交互中指向方向的概率检测

Dadhichi Shukla, Ö. Erkent, J. Piater
{"title":"人机交互中指向方向的概率检测","authors":"Dadhichi Shukla, Ö. Erkent, J. Piater","doi":"10.1109/DICTA.2015.7371296","DOIUrl":null,"url":null,"abstract":"Deictic gestures - pointing at things in human-human collaborative tasks - constitute a pervasive, non-verbal way of communication, used e.g. to direct attention towards objects of interest. In a human-robot interactive scenario, in order to delegate tasks from a human to a robot, one of the key requirements is to recognize and estimate the pose of the pointing gesture. Standard approaches rely on full-body or partial-body postures to detect the pointing direction. We present a probabilistic, appearance-based object detection framework to detect pointing gestures and robustly estimate the pointing direction. Our method estimates the pointing direction without assuming any human kinematic model. We propose a functional model for pointing which incorporates two types of pointing, finger pointing and tool pointing using an object in hand. We evaluate our method on a new dataset with 9 participants pointing at 10 objects.","PeriodicalId":214897,"journal":{"name":"2015 International Conference on Digital Image Computing: Techniques and Applications (DICTA)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"30","resultStr":"{\"title\":\"Probabilistic Detection of Pointing Directions for Human-Robot Interaction\",\"authors\":\"Dadhichi Shukla, Ö. Erkent, J. Piater\",\"doi\":\"10.1109/DICTA.2015.7371296\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Deictic gestures - pointing at things in human-human collaborative tasks - constitute a pervasive, non-verbal way of communication, used e.g. to direct attention towards objects of interest. In a human-robot interactive scenario, in order to delegate tasks from a human to a robot, one of the key requirements is to recognize and estimate the pose of the pointing gesture. Standard approaches rely on full-body or partial-body postures to detect the pointing direction. We present a probabilistic, appearance-based object detection framework to detect pointing gestures and robustly estimate the pointing direction. Our method estimates the pointing direction without assuming any human kinematic model. We propose a functional model for pointing which incorporates two types of pointing, finger pointing and tool pointing using an object in hand. We evaluate our method on a new dataset with 9 participants pointing at 10 objects.\",\"PeriodicalId\":214897,\"journal\":{\"name\":\"2015 International Conference on Digital Image Computing: Techniques and Applications (DICTA)\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"30\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2015 International Conference on Digital Image Computing: Techniques and Applications (DICTA)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/DICTA.2015.7371296\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 International Conference on Digital Image Computing: Techniques and Applications (DICTA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/DICTA.2015.7371296","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 30

摘要

指示手势——在人与人之间的协作任务中指向事物——构成了一种普遍的、非语言的交流方式,例如用于将注意力引向感兴趣的物体。在人机交互场景中,为了将任务从人委派给机器人,关键要求之一是识别和估计指向手势的姿势。标准的方法依靠全身或部分身体的姿势来检测指向的方向。我们提出了一个概率的,基于外观的目标检测框架来检测指向手势和鲁棒估计指向方向。我们的方法在不假设任何人体运动学模型的情况下估计指向。我们提出了一种功能模型,该模型包含两种类型的指向,手指指向和使用手持物体的工具指向。我们在一个新的数据集上评估我们的方法,其中9个参与者指向10个对象。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Probabilistic Detection of Pointing Directions for Human-Robot Interaction
Deictic gestures - pointing at things in human-human collaborative tasks - constitute a pervasive, non-verbal way of communication, used e.g. to direct attention towards objects of interest. In a human-robot interactive scenario, in order to delegate tasks from a human to a robot, one of the key requirements is to recognize and estimate the pose of the pointing gesture. Standard approaches rely on full-body or partial-body postures to detect the pointing direction. We present a probabilistic, appearance-based object detection framework to detect pointing gestures and robustly estimate the pointing direction. Our method estimates the pointing direction without assuming any human kinematic model. We propose a functional model for pointing which incorporates two types of pointing, finger pointing and tool pointing using an object in hand. We evaluate our method on a new dataset with 9 participants pointing at 10 objects.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信