多传感器融合用于地面车辆导航

J. Sasiadek, Arsalan Ahmed
{"title":"多传感器融合用于地面车辆导航","authors":"J. Sasiadek, Arsalan Ahmed","doi":"10.1109/MMAR55195.2022.9874342","DOIUrl":null,"url":null,"abstract":"In this paper, a navigation solution for a ground vehicle is developed by fusing navigation data from Inertial Navigation System (INS), Visual Odometry (VO), and Global Positioning System (GPS) using a Dual Extended Kalman Filter (DEKF) algorithm. The research contributions are divided in two stages. The first stage presents VO navigation system termed as Modified Stereo Visual Odometry (ModSVO) which modifies the pose estimation and pose optimization segments of the traditional stereo vision pipelines to provide an algorithm which is shown to improve accuracy when compared with the tradition Stereo Visual Odometry (SVO) approach. The second stage presents the development of INS/VO/GPS integrated navigation system using DEKF. The developed navigation solution is shown to outperform the INS/VO integrated system in case of VO failure and outperform the INS/GPS integrated system in case of GPS failure. The experimental evaluation is conducted on the well-known KITTI (Karlsruhe Institute of Technology and Toyota Technological Institute) real-world dataset.","PeriodicalId":169528,"journal":{"name":"2022 26th International Conference on Methods and Models in Automation and Robotics (MMAR)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-08-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Multi-Sensor Fusion for Navigation of Ground Vehicles\",\"authors\":\"J. Sasiadek, Arsalan Ahmed\",\"doi\":\"10.1109/MMAR55195.2022.9874342\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, a navigation solution for a ground vehicle is developed by fusing navigation data from Inertial Navigation System (INS), Visual Odometry (VO), and Global Positioning System (GPS) using a Dual Extended Kalman Filter (DEKF) algorithm. The research contributions are divided in two stages. The first stage presents VO navigation system termed as Modified Stereo Visual Odometry (ModSVO) which modifies the pose estimation and pose optimization segments of the traditional stereo vision pipelines to provide an algorithm which is shown to improve accuracy when compared with the tradition Stereo Visual Odometry (SVO) approach. The second stage presents the development of INS/VO/GPS integrated navigation system using DEKF. The developed navigation solution is shown to outperform the INS/VO integrated system in case of VO failure and outperform the INS/GPS integrated system in case of GPS failure. The experimental evaluation is conducted on the well-known KITTI (Karlsruhe Institute of Technology and Toyota Technological Institute) real-world dataset.\",\"PeriodicalId\":169528,\"journal\":{\"name\":\"2022 26th International Conference on Methods and Models in Automation and Robotics (MMAR)\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-08-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 26th International Conference on Methods and Models in Automation and Robotics (MMAR)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/MMAR55195.2022.9874342\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 26th International Conference on Methods and Models in Automation and Robotics (MMAR)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/MMAR55195.2022.9874342","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文采用双扩展卡尔曼滤波(DEKF)算法,将惯性导航系统(INS)、视觉里程计(VO)和全球定位系统(GPS)的导航数据融合在一起,提出了一种地面车辆导航解决方案。研究贡献分为两个阶段。第一阶段提出了一种改进的立体视觉路径(ModSVO)导航系统,该系统对传统立体视觉路径的位姿估计和位姿优化部分进行了修改,提供了一种与传统立体视觉路径(SVO)方法相比精度更高的算法。第二阶段是利用DEKF技术开发INS/VO/GPS组合导航系统。结果表明,所开发的导航方案在VO故障情况下优于INS/VO集成系统,在GPS故障情况下优于INS/GPS集成系统。实验评估是在著名的KITTI(卡尔斯鲁厄理工学院和丰田理工学院)真实世界数据集上进行的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Multi-Sensor Fusion for Navigation of Ground Vehicles
In this paper, a navigation solution for a ground vehicle is developed by fusing navigation data from Inertial Navigation System (INS), Visual Odometry (VO), and Global Positioning System (GPS) using a Dual Extended Kalman Filter (DEKF) algorithm. The research contributions are divided in two stages. The first stage presents VO navigation system termed as Modified Stereo Visual Odometry (ModSVO) which modifies the pose estimation and pose optimization segments of the traditional stereo vision pipelines to provide an algorithm which is shown to improve accuracy when compared with the tradition Stereo Visual Odometry (SVO) approach. The second stage presents the development of INS/VO/GPS integrated navigation system using DEKF. The developed navigation solution is shown to outperform the INS/VO integrated system in case of VO failure and outperform the INS/GPS integrated system in case of GPS failure. The experimental evaluation is conducted on the well-known KITTI (Karlsruhe Institute of Technology and Toyota Technological Institute) real-world dataset.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信