神经形态系统中活动依赖的结构可塑性

R. George, G. Indiveri, S. Vassanelli
{"title":"神经形态系统中活动依赖的结构可塑性","authors":"R. George, G. Indiveri, S. Vassanelli","doi":"10.1109/BIOCAS.2017.8325074","DOIUrl":null,"url":null,"abstract":"Research in neuroscience suggests that networks of biological neurons undergo a constant reconfiguration of their topology via activity-dependent plasticity mechanisms. The observed growing and retracting of dendritic spines can be hypothesized to be a resource-optimizing strategy that limits the amount of energy spent on maintaining a large number synapses that are not contributing to the networks performance. Neuromorphic analog VLSI emulates biophysical processes of neural tissue using CMOS transistors operated in the sub-threshold regime, to achieve high energy efficiency. One of the constraints that limits the scalability of neuromorphic information processing architectures is the number of available synapse-emulating circuits, which is naturally limited by the integrated circuits (ICs) layout dimensions. Here we explore the possibility to exploit structural plasticity as a biologically-inspired strategy for optimizing resource usage in neuromorphic processors. We propose a mechanism that allocates the limited number of synapses during runtime, in order to choose event-sources that best contribute to the postsynaptic neurons activity. In this context, we show that neuronal activity can serve as an indicator of what synapse to connect to which source, mimicking activity dependent dynamics of dendritic spines and making optimal allocation of the resources available on the neuromorphic hardware.","PeriodicalId":361477,"journal":{"name":"2017 IEEE Biomedical Circuits and Systems Conference (BioCAS)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":"{\"title\":\"Activity dependent structural plasticity in neuromorphic systems\",\"authors\":\"R. George, G. Indiveri, S. Vassanelli\",\"doi\":\"10.1109/BIOCAS.2017.8325074\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Research in neuroscience suggests that networks of biological neurons undergo a constant reconfiguration of their topology via activity-dependent plasticity mechanisms. The observed growing and retracting of dendritic spines can be hypothesized to be a resource-optimizing strategy that limits the amount of energy spent on maintaining a large number synapses that are not contributing to the networks performance. Neuromorphic analog VLSI emulates biophysical processes of neural tissue using CMOS transistors operated in the sub-threshold regime, to achieve high energy efficiency. One of the constraints that limits the scalability of neuromorphic information processing architectures is the number of available synapse-emulating circuits, which is naturally limited by the integrated circuits (ICs) layout dimensions. Here we explore the possibility to exploit structural plasticity as a biologically-inspired strategy for optimizing resource usage in neuromorphic processors. We propose a mechanism that allocates the limited number of synapses during runtime, in order to choose event-sources that best contribute to the postsynaptic neurons activity. In this context, we show that neuronal activity can serve as an indicator of what synapse to connect to which source, mimicking activity dependent dynamics of dendritic spines and making optimal allocation of the resources available on the neuromorphic hardware.\",\"PeriodicalId\":361477,\"journal\":{\"name\":\"2017 IEEE Biomedical Circuits and Systems Conference (BioCAS)\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"8\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2017 IEEE Biomedical Circuits and Systems Conference (BioCAS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/BIOCAS.2017.8325074\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 IEEE Biomedical Circuits and Systems Conference (BioCAS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/BIOCAS.2017.8325074","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 8

摘要

神经科学研究表明,生物神经元网络通过活动依赖的可塑性机制不断地重新配置其拓扑结构。观察到的树突棘的生长和收缩可以被假设为一种资源优化策略,该策略限制了用于维持大量对网络性能没有贡献的突触的能量。神经形态模拟VLSI使用在亚阈值状态下工作的CMOS晶体管模拟神经组织的生物物理过程,以实现高能效。限制神经形态信息处理体系结构可扩展性的制约因素之一是可用的突触仿真电路的数量,这自然受到集成电路(ic)布局尺寸的限制。在这里,我们探讨了利用结构可塑性作为一种生物学启发的策略来优化神经形态处理器的资源使用的可能性。我们提出了一种在运行时分配有限突触数量的机制,以选择最有助于突触后神经元活动的事件源。在这种情况下,我们表明神经元活动可以作为突触连接到哪个来源的指标,模拟树突棘的活动依赖动力学,并使神经形态硬件上可用的资源得到最佳分配。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Activity dependent structural plasticity in neuromorphic systems
Research in neuroscience suggests that networks of biological neurons undergo a constant reconfiguration of their topology via activity-dependent plasticity mechanisms. The observed growing and retracting of dendritic spines can be hypothesized to be a resource-optimizing strategy that limits the amount of energy spent on maintaining a large number synapses that are not contributing to the networks performance. Neuromorphic analog VLSI emulates biophysical processes of neural tissue using CMOS transistors operated in the sub-threshold regime, to achieve high energy efficiency. One of the constraints that limits the scalability of neuromorphic information processing architectures is the number of available synapse-emulating circuits, which is naturally limited by the integrated circuits (ICs) layout dimensions. Here we explore the possibility to exploit structural plasticity as a biologically-inspired strategy for optimizing resource usage in neuromorphic processors. We propose a mechanism that allocates the limited number of synapses during runtime, in order to choose event-sources that best contribute to the postsynaptic neurons activity. In this context, we show that neuronal activity can serve as an indicator of what synapse to connect to which source, mimicking activity dependent dynamics of dendritic spines and making optimal allocation of the resources available on the neuromorphic hardware.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信