弱奇异积分的精确积分

S. Seo, Jin-Fa Lee
{"title":"弱奇异积分的精确积分","authors":"S. Seo, Jin-Fa Lee","doi":"10.1109/CEFC-06.2006.1632825","DOIUrl":null,"url":null,"abstract":"The paper presents an accurate integration of weakly singular integrals. The proposed approach is based on the combination of a polar coordinate transformation and an analytic integration for finite element method. The accuracy and stability of the electric field integral equation (EFIE) is then greatly improved","PeriodicalId":262549,"journal":{"name":"2006 12th Biennial IEEE Conference on Electromagnetic Field Computation","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2006-06-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Accurate Integration of the Weakly Singular Integrals from EFIE\",\"authors\":\"S. Seo, Jin-Fa Lee\",\"doi\":\"10.1109/CEFC-06.2006.1632825\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The paper presents an accurate integration of weakly singular integrals. The proposed approach is based on the combination of a polar coordinate transformation and an analytic integration for finite element method. The accuracy and stability of the electric field integral equation (EFIE) is then greatly improved\",\"PeriodicalId\":262549,\"journal\":{\"name\":\"2006 12th Biennial IEEE Conference on Electromagnetic Field Computation\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2006-06-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2006 12th Biennial IEEE Conference on Electromagnetic Field Computation\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CEFC-06.2006.1632825\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2006 12th Biennial IEEE Conference on Electromagnetic Field Computation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CEFC-06.2006.1632825","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

本文给出了弱奇异积分的一种精确积分。提出了一种基于极坐标变换和有限元解析积分相结合的方法。从而大大提高了电场积分方程(EFIE)的精度和稳定性
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Accurate Integration of the Weakly Singular Integrals from EFIE
The paper presents an accurate integration of weakly singular integrals. The proposed approach is based on the combination of a polar coordinate transformation and an analytic integration for finite element method. The accuracy and stability of the electric field integral equation (EFIE) is then greatly improved
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信