{"title":"采用多数数据挖掘分类算法选择技术对汽车保险的可持续性状态预测模型","authors":"D. Utari, Arief Wibowo","doi":"10.22236/teknoka.v5i.391","DOIUrl":null,"url":null,"abstract":"Asuransi kendaraan bermotor merupakan jenis usaha pertanggungan terhadap kerugian atau risiko kerusakan yang dapat timbul dari berbagai macam potensi kejadian yang menimpa kendaraan. Persaingan dalam bisnis asuransi khususnya untuk kendaraan bermotor menuntut inovasi dan strategi agar keberlangsungan bisnis tetap terjamin. Salah satu upaya yang dapat dilakukan perusahaan adalah memprediksi status keberlanjutan polis asuransi kendaraan dengan menganalisis data-data profil dan transaksi nasabah. Prediksi terhadap keputusan pemegang polis menjadi sangat penting bagi perusahaan, karena dapat menentukan strategi pemasaran yang mempengaruhi keputusan pelanggan untuk pembaharuan polis asuransi. Penelitian ini telah mengusulkan suatu model prediksi status keberlanjutan polis asuransi kendaraan dengan teknik pemilihan mayoritas dari hasil klasifikasi menggunakan algoritma- algoritma data mining seperti Naive Bayes, Support Vector Machine dan Decision Tree. Hasil pengujian menggunakan confusion matrix menunjukkan nilai akurasi terbaik diperoleh sebesar 93,57%, apapun untuk nilai precision mencapai 97,20%, dan nilai recall sebesar 95,20% serta nilai F-Measure sebesar 95,30%. Nilai evaluasi model terbaik dihasilkan menggunakan pendekatan pemilihan mayoritas (majority voting), mengungguli kinerja model prediksi berbasis pengklasifikasi tunggal.","PeriodicalId":118779,"journal":{"name":"Prosiding Seminar Nasional Teknoka","volume":"43 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-12-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Pemodelan Prediksi Status Keberlanjutan Polis Asuransi Kendaraan dengan Teknik Pemilihan Mayoritas Menggunakan Algoritma-Algoritma Klasifikasi Data Mining\",\"authors\":\"D. Utari, Arief Wibowo\",\"doi\":\"10.22236/teknoka.v5i.391\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Asuransi kendaraan bermotor merupakan jenis usaha pertanggungan terhadap kerugian atau risiko kerusakan yang dapat timbul dari berbagai macam potensi kejadian yang menimpa kendaraan. Persaingan dalam bisnis asuransi khususnya untuk kendaraan bermotor menuntut inovasi dan strategi agar keberlangsungan bisnis tetap terjamin. Salah satu upaya yang dapat dilakukan perusahaan adalah memprediksi status keberlanjutan polis asuransi kendaraan dengan menganalisis data-data profil dan transaksi nasabah. Prediksi terhadap keputusan pemegang polis menjadi sangat penting bagi perusahaan, karena dapat menentukan strategi pemasaran yang mempengaruhi keputusan pelanggan untuk pembaharuan polis asuransi. Penelitian ini telah mengusulkan suatu model prediksi status keberlanjutan polis asuransi kendaraan dengan teknik pemilihan mayoritas dari hasil klasifikasi menggunakan algoritma- algoritma data mining seperti Naive Bayes, Support Vector Machine dan Decision Tree. Hasil pengujian menggunakan confusion matrix menunjukkan nilai akurasi terbaik diperoleh sebesar 93,57%, apapun untuk nilai precision mencapai 97,20%, dan nilai recall sebesar 95,20% serta nilai F-Measure sebesar 95,30%. Nilai evaluasi model terbaik dihasilkan menggunakan pendekatan pemilihan mayoritas (majority voting), mengungguli kinerja model prediksi berbasis pengklasifikasi tunggal.\",\"PeriodicalId\":118779,\"journal\":{\"name\":\"Prosiding Seminar Nasional Teknoka\",\"volume\":\"43 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-12-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Prosiding Seminar Nasional Teknoka\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.22236/teknoka.v5i.391\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Prosiding Seminar Nasional Teknoka","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.22236/teknoka.v5i.391","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Pemodelan Prediksi Status Keberlanjutan Polis Asuransi Kendaraan dengan Teknik Pemilihan Mayoritas Menggunakan Algoritma-Algoritma Klasifikasi Data Mining
Asuransi kendaraan bermotor merupakan jenis usaha pertanggungan terhadap kerugian atau risiko kerusakan yang dapat timbul dari berbagai macam potensi kejadian yang menimpa kendaraan. Persaingan dalam bisnis asuransi khususnya untuk kendaraan bermotor menuntut inovasi dan strategi agar keberlangsungan bisnis tetap terjamin. Salah satu upaya yang dapat dilakukan perusahaan adalah memprediksi status keberlanjutan polis asuransi kendaraan dengan menganalisis data-data profil dan transaksi nasabah. Prediksi terhadap keputusan pemegang polis menjadi sangat penting bagi perusahaan, karena dapat menentukan strategi pemasaran yang mempengaruhi keputusan pelanggan untuk pembaharuan polis asuransi. Penelitian ini telah mengusulkan suatu model prediksi status keberlanjutan polis asuransi kendaraan dengan teknik pemilihan mayoritas dari hasil klasifikasi menggunakan algoritma- algoritma data mining seperti Naive Bayes, Support Vector Machine dan Decision Tree. Hasil pengujian menggunakan confusion matrix menunjukkan nilai akurasi terbaik diperoleh sebesar 93,57%, apapun untuk nilai precision mencapai 97,20%, dan nilai recall sebesar 95,20% serta nilai F-Measure sebesar 95,30%. Nilai evaluasi model terbaik dihasilkan menggunakan pendekatan pemilihan mayoritas (majority voting), mengungguli kinerja model prediksi berbasis pengklasifikasi tunggal.