探索基于核酶识别的蛋白质结构建模

Marco A. Alvarez, Changhui Yan
{"title":"探索基于核酶识别的蛋白质结构建模","authors":"Marco A. Alvarez, Changhui Yan","doi":"10.1109/CIBCB.2010.5510588","DOIUrl":null,"url":null,"abstract":"Computational methods play an important role in investigating the relationships between protein structure and function. In this study, we evaluate different graph representations of protein structures for kernel-based protein function prediction. We use shortest path graph kernels and support vector machines to predict whether a protein is an enzyme or not. We present three different and straightforward strategies for modeling protein structures. Accuracy averages for 10-fold cross-validation range from 84.31% to 86.97% for different modeling strategies, outperforming state-of-the-art work.","PeriodicalId":340637,"journal":{"name":"2010 IEEE Symposium on Computational Intelligence in Bioinformatics and Computational Biology","volume":"33 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-05-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Exploring structural modeling of proteins for kernel-based enzyme discrimination\",\"authors\":\"Marco A. Alvarez, Changhui Yan\",\"doi\":\"10.1109/CIBCB.2010.5510588\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Computational methods play an important role in investigating the relationships between protein structure and function. In this study, we evaluate different graph representations of protein structures for kernel-based protein function prediction. We use shortest path graph kernels and support vector machines to predict whether a protein is an enzyme or not. We present three different and straightforward strategies for modeling protein structures. Accuracy averages for 10-fold cross-validation range from 84.31% to 86.97% for different modeling strategies, outperforming state-of-the-art work.\",\"PeriodicalId\":340637,\"journal\":{\"name\":\"2010 IEEE Symposium on Computational Intelligence in Bioinformatics and Computational Biology\",\"volume\":\"33 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2010-05-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2010 IEEE Symposium on Computational Intelligence in Bioinformatics and Computational Biology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CIBCB.2010.5510588\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 IEEE Symposium on Computational Intelligence in Bioinformatics and Computational Biology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CIBCB.2010.5510588","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

计算方法在研究蛋白质结构与功能之间的关系方面发挥着重要作用。在这项研究中,我们评估了基于核的蛋白质功能预测中蛋白质结构的不同图表示。我们使用最短路径图核和支持向量机来预测蛋白质是否是酶。我们提出了三种不同的和直接的策略来建模蛋白质结构。对于不同的建模策略,10倍交叉验证的平均准确率从84.31%到86.97%不等,优于最先进的工作。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Exploring structural modeling of proteins for kernel-based enzyme discrimination
Computational methods play an important role in investigating the relationships between protein structure and function. In this study, we evaluate different graph representations of protein structures for kernel-based protein function prediction. We use shortest path graph kernels and support vector machines to predict whether a protein is an enzyme or not. We present three different and straightforward strategies for modeling protein structures. Accuracy averages for 10-fold cross-validation range from 84.31% to 86.97% for different modeling strategies, outperforming state-of-the-art work.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信