使用BERT嵌入个性化基于类型的面排序

Esraa Ali, A. Caputo, S. Lawless, Owen Conlan
{"title":"使用BERT嵌入个性化基于类型的面排序","authors":"Esraa Ali, A. Caputo, S. Lawless, Owen Conlan","doi":"10.3233/ssw210040","DOIUrl":null,"url":null,"abstract":"In Faceted Search Systems (FSS), users navigate the information space through facets, which are attributes or meta-data that describe the underlying content of the collection. Type-based facets (aka t-facets) help explore the categories associated with the searched objects in structured information space. This work investigates how personalizing t-facet ranking can minimize user effort to reach the intended search target. We propose a lightweight personalisation method based on Vector Space Model (VSM) for ranking the t-facet hierarchy in two steps. The first step scores each individual leaf-node t-facet by computing the similarity between the t-facet BERT embedding and the user profile vector. In this model, the user’s profile is expressed in a category space through vectors that capture the users’ past preferences. In the second step, this score is used to re-order and select the sub-tree to present to the user. The final ranked tree reflects the t-facet relevance both to the query and the user profile. Through the use of embeddings, the proposed method effectively handles unseen facets without adding extra processing to the FSS. The effectiveness of the proposed approach is measured by the user effort required to retrieve the sought item when using the ranked facets. The approach outperformed existing personalization baselines.","PeriodicalId":275036,"journal":{"name":"International Conference on Semantic Systems","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-08-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Personalizing Type-Based Facet Ranking Using BERT Embeddings\",\"authors\":\"Esraa Ali, A. Caputo, S. Lawless, Owen Conlan\",\"doi\":\"10.3233/ssw210040\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In Faceted Search Systems (FSS), users navigate the information space through facets, which are attributes or meta-data that describe the underlying content of the collection. Type-based facets (aka t-facets) help explore the categories associated with the searched objects in structured information space. This work investigates how personalizing t-facet ranking can minimize user effort to reach the intended search target. We propose a lightweight personalisation method based on Vector Space Model (VSM) for ranking the t-facet hierarchy in two steps. The first step scores each individual leaf-node t-facet by computing the similarity between the t-facet BERT embedding and the user profile vector. In this model, the user’s profile is expressed in a category space through vectors that capture the users’ past preferences. In the second step, this score is used to re-order and select the sub-tree to present to the user. The final ranked tree reflects the t-facet relevance both to the query and the user profile. Through the use of embeddings, the proposed method effectively handles unseen facets without adding extra processing to the FSS. The effectiveness of the proposed approach is measured by the user effort required to retrieve the sought item when using the ranked facets. The approach outperformed existing personalization baselines.\",\"PeriodicalId\":275036,\"journal\":{\"name\":\"International Conference on Semantic Systems\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-08-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Conference on Semantic Systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3233/ssw210040\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Conference on Semantic Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3233/ssw210040","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

在面搜索系统(Faceted Search Systems, FSS)中,用户通过面来导航信息空间,面是描述集合底层内容的属性或元数据。基于类型的facet(又名t-facet)有助于探索与结构化信息空间中搜索对象相关的类别。这项工作研究了个性化t-facet排名如何最大限度地减少用户达到预期搜索目标的努力。我们提出了一种基于向量空间模型(VSM)的轻量级个性化方法,分两步对t-facet层次结构进行排序。第一步通过计算t-facet BERT嵌入和用户轮廓向量之间的相似性来对每个单独的叶节点t-facet进行评分。在该模型中,用户的个人资料通过捕获用户过去偏好的向量在类别空间中表示。在第二步中,使用该分数重新排序并选择要呈现给用户的子树。最后的排序树反映了t-facet与查询和用户概要文件的相关性。通过使用嵌入,所提出的方法有效地处理不可见的面,而不增加额外的处理到FSS。所建议的方法的有效性是通过用户在使用排序facet时检索所搜索项所需的工作量来衡量的。该方法优于现有的个性化基线。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Personalizing Type-Based Facet Ranking Using BERT Embeddings
In Faceted Search Systems (FSS), users navigate the information space through facets, which are attributes or meta-data that describe the underlying content of the collection. Type-based facets (aka t-facets) help explore the categories associated with the searched objects in structured information space. This work investigates how personalizing t-facet ranking can minimize user effort to reach the intended search target. We propose a lightweight personalisation method based on Vector Space Model (VSM) for ranking the t-facet hierarchy in two steps. The first step scores each individual leaf-node t-facet by computing the similarity between the t-facet BERT embedding and the user profile vector. In this model, the user’s profile is expressed in a category space through vectors that capture the users’ past preferences. In the second step, this score is used to re-order and select the sub-tree to present to the user. The final ranked tree reflects the t-facet relevance both to the query and the user profile. Through the use of embeddings, the proposed method effectively handles unseen facets without adding extra processing to the FSS. The effectiveness of the proposed approach is measured by the user effort required to retrieve the sought item when using the ranked facets. The approach outperformed existing personalization baselines.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信