单位规模作业下在线租金最小化问题的改进算法

Enze Sun, Zonghan Yang, Yuhao Zhang
{"title":"单位规模作业下在线租金最小化问题的改进算法","authors":"Enze Sun, Zonghan Yang, Yuhao Zhang","doi":"10.48550/arXiv.2306.17241","DOIUrl":null,"url":null,"abstract":"We consider the Online Rent Minimization problem, where online jobs with release times, deadlines, and processing times must be scheduled on machines that can be rented for a fixed length period of $T$. The objective is to minimize the number of machine rents. This problem generalizes the Online Machine Minimization problem where machines can be rented for an infinite period, and both problems have an asymptotically optimal competitive ratio of $O(\\log(p_{\\max}/p_{\\min}))$ for general processing times, where $p_{\\max}$ and $p_{\\min}$ are the maximum and minimum processing times respectively. However, for small values of $p_{\\max}/p_{\\min}$, a better competitive ratio can be achieved by assuming unit-size jobs. Under this assumption, Devanur et al. (2014) gave an optimal $e$-competitive algorithm for Online Machine Minimization, and Chen and Zhang (2022) gave a $(3e+7)\\approx 15.16$-competitive algorithm for Online Rent Minimization. In this paper, we significantly improve the competitive ratio of the Online Rent Minimization problem under unit size to $6$, by using a clean oracle-based online algorithm framework.","PeriodicalId":201778,"journal":{"name":"Embedded Systems and Applications","volume":"87 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-06-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Improved Algorithms for Online Rent Minimization Problem Under Unit-Size Jobs\",\"authors\":\"Enze Sun, Zonghan Yang, Yuhao Zhang\",\"doi\":\"10.48550/arXiv.2306.17241\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We consider the Online Rent Minimization problem, where online jobs with release times, deadlines, and processing times must be scheduled on machines that can be rented for a fixed length period of $T$. The objective is to minimize the number of machine rents. This problem generalizes the Online Machine Minimization problem where machines can be rented for an infinite period, and both problems have an asymptotically optimal competitive ratio of $O(\\\\log(p_{\\\\max}/p_{\\\\min}))$ for general processing times, where $p_{\\\\max}$ and $p_{\\\\min}$ are the maximum and minimum processing times respectively. However, for small values of $p_{\\\\max}/p_{\\\\min}$, a better competitive ratio can be achieved by assuming unit-size jobs. Under this assumption, Devanur et al. (2014) gave an optimal $e$-competitive algorithm for Online Machine Minimization, and Chen and Zhang (2022) gave a $(3e+7)\\\\approx 15.16$-competitive algorithm for Online Rent Minimization. In this paper, we significantly improve the competitive ratio of the Online Rent Minimization problem under unit size to $6$, by using a clean oracle-based online algorithm framework.\",\"PeriodicalId\":201778,\"journal\":{\"name\":\"Embedded Systems and Applications\",\"volume\":\"87 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-06-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Embedded Systems and Applications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.48550/arXiv.2306.17241\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Embedded Systems and Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.48550/arXiv.2306.17241","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

我们考虑在线租金最小化问题,其中具有发布时间、截止日期和处理时间的在线作业必须安排在可以租用固定长度的$T$的机器上。目标是尽量减少机器租金的数量。该问题推广了在线机器最小化问题,其中机器可以无限租用,并且两个问题对于一般处理时间都具有渐近最优竞争比$O(\log(p_{\max}/p_{\min}))$,其中$p_{\max}$和$p_{\min}$分别是最大和最小处理时间。然而,对于较小的$p_{\max}/p_{\min}$值,可以通过假设单位大小的工作来实现更好的竞争比率。在此假设下,Devanur等人(2014)给出了在线机器最小化的最优$e$ -竞争算法,Chen和Zhang(2022)给出了在线租金最小化的$(3e+7)\approx 15.16$ -竞争算法。在本文中,我们使用一个干净的基于oracle的在线算法框架,将单元规模下的在线租金最小化问题的竞争比显著提高到$6$。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Improved Algorithms for Online Rent Minimization Problem Under Unit-Size Jobs
We consider the Online Rent Minimization problem, where online jobs with release times, deadlines, and processing times must be scheduled on machines that can be rented for a fixed length period of $T$. The objective is to minimize the number of machine rents. This problem generalizes the Online Machine Minimization problem where machines can be rented for an infinite period, and both problems have an asymptotically optimal competitive ratio of $O(\log(p_{\max}/p_{\min}))$ for general processing times, where $p_{\max}$ and $p_{\min}$ are the maximum and minimum processing times respectively. However, for small values of $p_{\max}/p_{\min}$, a better competitive ratio can be achieved by assuming unit-size jobs. Under this assumption, Devanur et al. (2014) gave an optimal $e$-competitive algorithm for Online Machine Minimization, and Chen and Zhang (2022) gave a $(3e+7)\approx 15.16$-competitive algorithm for Online Rent Minimization. In this paper, we significantly improve the competitive ratio of the Online Rent Minimization problem under unit size to $6$, by using a clean oracle-based online algorithm framework.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信