使用MapReduce进行滚动窗时间序列预测

Lei Li, Farzad Noorian, Duncan J. M. Moss, P. Leong
{"title":"使用MapReduce进行滚动窗时间序列预测","authors":"Lei Li, Farzad Noorian, Duncan J. M. Moss, P. Leong","doi":"10.1109/IRI.2014.7051965","DOIUrl":null,"url":null,"abstract":"Prediction of time series data is an important application in many domains. Despite their advantages, traditional databases and MapReduce methodology are not ideally suited for this type of processing due to dependencies introduced by the sequential nature of time series. We present a novel framework to facilitate retrieval and rolling-window prediction of irregularly sampled large-scale time series data. By introducing a new index pool data structure, processing of time series can be efficiently parallelised. The proposed framework is implemented in R programming environment and utilises Hadoop to support parallelisation and fault tolerance. Experimental results indicate our proposed framework scales linearly up to 32-nodes.","PeriodicalId":360013,"journal":{"name":"Proceedings of the 2014 IEEE 15th International Conference on Information Reuse and Integration (IEEE IRI 2014)","volume":"138 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-08-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"22","resultStr":"{\"title\":\"Rolling window time series prediction using MapReduce\",\"authors\":\"Lei Li, Farzad Noorian, Duncan J. M. Moss, P. Leong\",\"doi\":\"10.1109/IRI.2014.7051965\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Prediction of time series data is an important application in many domains. Despite their advantages, traditional databases and MapReduce methodology are not ideally suited for this type of processing due to dependencies introduced by the sequential nature of time series. We present a novel framework to facilitate retrieval and rolling-window prediction of irregularly sampled large-scale time series data. By introducing a new index pool data structure, processing of time series can be efficiently parallelised. The proposed framework is implemented in R programming environment and utilises Hadoop to support parallelisation and fault tolerance. Experimental results indicate our proposed framework scales linearly up to 32-nodes.\",\"PeriodicalId\":360013,\"journal\":{\"name\":\"Proceedings of the 2014 IEEE 15th International Conference on Information Reuse and Integration (IEEE IRI 2014)\",\"volume\":\"138 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-08-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"22\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 2014 IEEE 15th International Conference on Information Reuse and Integration (IEEE IRI 2014)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IRI.2014.7051965\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2014 IEEE 15th International Conference on Information Reuse and Integration (IEEE IRI 2014)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IRI.2014.7051965","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 22

摘要

时间序列数据的预测是许多领域的重要应用。尽管传统数据库和MapReduce方法具有优势,但由于时间序列的顺序性所带来的依赖性,它们并不适合这种类型的处理。我们提出了一个新的框架,以方便检索和滚动窗口预测不规则采样的大规模时间序列数据。通过引入一种新的索引池数据结构,可以有效地并行化时间序列的处理。该框架在R编程环境中实现,并利用Hadoop支持并行化和容错。实验结果表明,我们提出的框架可以线性扩展到32个节点。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Rolling window time series prediction using MapReduce
Prediction of time series data is an important application in many domains. Despite their advantages, traditional databases and MapReduce methodology are not ideally suited for this type of processing due to dependencies introduced by the sequential nature of time series. We present a novel framework to facilitate retrieval and rolling-window prediction of irregularly sampled large-scale time series data. By introducing a new index pool data structure, processing of time series can be efficiently parallelised. The proposed framework is implemented in R programming environment and utilises Hadoop to support parallelisation and fault tolerance. Experimental results indicate our proposed framework scales linearly up to 32-nodes.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信