离散化未观测异质性

S. Bonhomme, T. Lamadon, E. Manresa
{"title":"离散化未观测异质性","authors":"S. Bonhomme, T. Lamadon, E. Manresa","doi":"10.2139/ssrn.3333452","DOIUrl":null,"url":null,"abstract":"We study discrete panel data methods where unobserved heterogeneity is revealed in a first step, in environments where population heterogeneity is not discrete. We focus on \n two‐step grouped fixed‐effects (GFE) estimators, where individuals are first classified into groups using \n kmeans clustering, and the model is then estimated allowing for group‐specific heterogeneity. Our framework relies on two key properties: heterogeneity is a function—possibly nonlinear and time‐varying—of a low‐dimensional continuous latent type, and informative moments are available for classification. We illustrate the method in a model of wages and labor market participation, and in a probit model with time‐varying heterogeneity. We derive asymptotic expansions of two‐step GFE estimators as the number of groups grows with the two dimensions of the panel. We propose a data‐driven rule for the number of groups, and discuss bias reduction and inference.\n","PeriodicalId":273058,"journal":{"name":"ERN: Model Construction & Estimation (Topic)","volume":"23 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-03-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"72","resultStr":"{\"title\":\"Discretizing Unobserved Heterogeneity\",\"authors\":\"S. Bonhomme, T. Lamadon, E. Manresa\",\"doi\":\"10.2139/ssrn.3333452\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We study discrete panel data methods where unobserved heterogeneity is revealed in a first step, in environments where population heterogeneity is not discrete. We focus on \\n two‐step grouped fixed‐effects (GFE) estimators, where individuals are first classified into groups using \\n kmeans clustering, and the model is then estimated allowing for group‐specific heterogeneity. Our framework relies on two key properties: heterogeneity is a function—possibly nonlinear and time‐varying—of a low‐dimensional continuous latent type, and informative moments are available for classification. We illustrate the method in a model of wages and labor market participation, and in a probit model with time‐varying heterogeneity. We derive asymptotic expansions of two‐step GFE estimators as the number of groups grows with the two dimensions of the panel. We propose a data‐driven rule for the number of groups, and discuss bias reduction and inference.\\n\",\"PeriodicalId\":273058,\"journal\":{\"name\":\"ERN: Model Construction & Estimation (Topic)\",\"volume\":\"23 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-03-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"72\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ERN: Model Construction & Estimation (Topic)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2139/ssrn.3333452\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ERN: Model Construction & Estimation (Topic)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2139/ssrn.3333452","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 72

摘要

我们研究了离散面板数据方法,其中在第一步揭示了未观察到的异质性,在人口异质性不是离散的环境中。我们专注于两步分组固定效应(GFE)估计,其中首先使用kmeans聚类将个体分类到组中,然后估计模型,允许组特定的异质性。我们的框架依赖于两个关键属性:异质性是一个低维连续潜在类型的函数-可能是非线性和时变的,并且信息矩可用于分类。我们在工资和劳动力市场参与的模型以及具有时变异质性的probit模型中说明了该方法。我们得到了两步GFE估计量的渐近展开式,当组的数量随面板的二维增长而增加时。我们提出了一个数据驱动的分组数量规则,并讨论了偏差减少和推理。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Discretizing Unobserved Heterogeneity
We study discrete panel data methods where unobserved heterogeneity is revealed in a first step, in environments where population heterogeneity is not discrete. We focus on two‐step grouped fixed‐effects (GFE) estimators, where individuals are first classified into groups using kmeans clustering, and the model is then estimated allowing for group‐specific heterogeneity. Our framework relies on two key properties: heterogeneity is a function—possibly nonlinear and time‐varying—of a low‐dimensional continuous latent type, and informative moments are available for classification. We illustrate the method in a model of wages and labor market participation, and in a probit model with time‐varying heterogeneity. We derive asymptotic expansions of two‐step GFE estimators as the number of groups grows with the two dimensions of the panel. We propose a data‐driven rule for the number of groups, and discuss bias reduction and inference.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信