具有统计离群值抑制的基于轨迹的立体视觉里程计

Jiyuan Zhang, Rui Gan, Gang Zeng, Falong Shen, H. Zha
{"title":"具有统计离群值抑制的基于轨迹的立体视觉里程计","authors":"Jiyuan Zhang, Rui Gan, Gang Zeng, Falong Shen, H. Zha","doi":"10.1109/ACPR.2015.7486575","DOIUrl":null,"url":null,"abstract":"We present a stereo visual odometry algorithm with trajectorical information accumulated over time and consistency among multiple trajectories of different motions. The objective function considers transfer error of all previously observed points to reduce drifting, and can be efficiently approximated and optimized within a computational bound. Different from traditional residual-based consistency measurement, we exploit the linear system in non-linear optimization to evaluate the influence of each point for outlier rejection. Both the drifting and irruptive error are reduced by combining trajectorical information of multiple motions. Experiments with real world dataset show that our method could handle difficult scenes with large portion of outliers without expensive computation.","PeriodicalId":240902,"journal":{"name":"2015 3rd IAPR Asian Conference on Pattern Recognition (ACPR)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Trajectory-based stereo visual odometry with statistical outlier rejection\",\"authors\":\"Jiyuan Zhang, Rui Gan, Gang Zeng, Falong Shen, H. Zha\",\"doi\":\"10.1109/ACPR.2015.7486575\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We present a stereo visual odometry algorithm with trajectorical information accumulated over time and consistency among multiple trajectories of different motions. The objective function considers transfer error of all previously observed points to reduce drifting, and can be efficiently approximated and optimized within a computational bound. Different from traditional residual-based consistency measurement, we exploit the linear system in non-linear optimization to evaluate the influence of each point for outlier rejection. Both the drifting and irruptive error are reduced by combining trajectorical information of multiple motions. Experiments with real world dataset show that our method could handle difficult scenes with large portion of outliers without expensive computation.\",\"PeriodicalId\":240902,\"journal\":{\"name\":\"2015 3rd IAPR Asian Conference on Pattern Recognition (ACPR)\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2015 3rd IAPR Asian Conference on Pattern Recognition (ACPR)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ACPR.2015.7486575\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 3rd IAPR Asian Conference on Pattern Recognition (ACPR)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ACPR.2015.7486575","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

我们提出了一种具有随时间累积轨迹信息和不同运动的多轨迹一致性的立体视觉里程计算法。该目标函数考虑了所有先前观察点的传递误差,以减少漂移,并且可以在计算范围内有效地逼近和优化。与传统的基于残差的一致性测量不同,我们利用非线性优化中的线性系统来评估每个点对排除异常值的影响。结合多运动轨迹信息,减小了漂移误差和侵入误差。在真实数据集上的实验表明,该方法可以在不耗费大量计算的情况下处理大量异常点的复杂场景。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Trajectory-based stereo visual odometry with statistical outlier rejection
We present a stereo visual odometry algorithm with trajectorical information accumulated over time and consistency among multiple trajectories of different motions. The objective function considers transfer error of all previously observed points to reduce drifting, and can be efficiently approximated and optimized within a computational bound. Different from traditional residual-based consistency measurement, we exploit the linear system in non-linear optimization to evaluate the influence of each point for outlier rejection. Both the drifting and irruptive error are reduced by combining trajectorical information of multiple motions. Experiments with real world dataset show that our method could handle difficult scenes with large portion of outliers without expensive computation.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信